[tensorflow] tf2.0 简单例子
tf2.0笔记
感觉,都统一了,pytorch tensorflow mxnet,大家都差不多了
gan例子笔记
import tensorflow as tf
from tensorflow.keras import Model,layers
import numpy as np
from tensorflow.keras.datasets import mnist
num_features = 784
lr_generator = 0.0002
lr_descriminator = 0.0002
training_steps = 20000
batch_size = 128
display_step = 500
noise_dim = 500
def getDataset():
(x_train,y_train),(x_test,y_test) = mnist.load_data()
x_train,x_test = np.array(x_train,np.float32),np.array(x_test,np.float32)
x_train,x_test = x_train/255.0,x_test/255.0
return x_train,y_train,x_test,y_test
x_train,y_train,x_test,y_test = getDataset()
# n轴拆分
train_data = tf.data.Dataset.from_tensor_slices((x_train,y_train))
# 这里学习一下
# tf.data.Dataset.repeat(count) 为空或-1无限延长
# shuffle这里填的buffer_size是一个epoch的样本数
# batch化
# 预读取一个数据
train_data = train_data.repeat().shuffle(10000).batch(batch_size).prefetch(1)
# Generator 过程
'''
b*500 -(fc之后)-> n*(7*7*128) -(reshape)-> n*7*7*128 -(upsample)-> n*14*14*64 -(upsample)->n*28*28*1
'''
class Generator(Model):
def __init__(self):
super(Generator,self).__init__()
self.fc1 = layers.Dense(7*7*128)
self.bn1 = layers.BatchNormalization()
# upsample卷积,反卷积
# https://github.com/vdumoulin/conv_arithmetic/raw/master/gif/padding_strides_transposed.gif
# 洞洞卷积,相当于same的stride=1,w=14,所以输出14*14
self.conv2tr1 = layers.Conv2DTranspose(64,5,strides=2,padding="SAME")#filters,kernel size
# 在batch维度和channel维度标准化
self.bn2 = layers.BatchNormalization()
self.conv2tr2 = layers.Conv2DTranspose(1,5,strides=2,padding="SAME")
def __call__(self,x,is_training = False):
x = self.fc1(x)
x = self.bn1(x,training = is_training)
# leaky_relu x<0时为x/a而不是0,防止梯度消失
x = tf.nn.leaky_relu(x)
x = tf.reshape(x,shape = [-1,7,7,128])
x = self.conv2tr1(x)
x = self.bn2(x,training = is_training)
x = tf.nn.leaky_relu(x)
x = self.conv2tr2(x)
x = tf.nn.tanh(x)
return x
# Discriminator 过程
'''
n*768 -> n*28*28*1 -> n*14*14*64 -> n*7*7*128 -> n*(7*7*128) -> n*1024 -> n*2
'''
class Discriminator(Model):
def __init__(self):
super(Discriminator,self).__init__()
self.conv1 = layers.Conv2D(64,5,strides = 2,padding = "SAME")
self.bn1 = layers.BatchNormalization()
self.conv2 = layers.Conv2D(128,5,strides = 2,padding = "SAME")
self.bn2 = layers.BatchNormalization()
self.flatten = layers.Flatten()
self.fc1 = layers.Dense(1024)
self.bn3 = layers.BatchNormalization()
self.fc2 = layers.Dense(2)
def __call__(self,is_training = False):
x = tf.reshape(x,[-1,28,28,1])
x = self.conv1(x)
x = self.bn1(x,training = is_training)
x = tf.nn.leaky_relu(x)
x = self.conv2(x)
x = self.bn2(x,training = is_training)
x = tf.nn.leaky_relu(x)
x = self.flatten(x)
x = self.fc1(x)
x = self.bn3(x,training = is_training)
x = tf.nn.leaky_relu()
x = self.fc2(x)
return x
generator = Generator()
discriminator = Discriminator()
def generator_loss(reconstructed_image):
gen_loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits = reconstructed_image,labels = tf.ones([batch_size],dtype = tf.int32)))
return gen_loss
def discriminator_loss(disc_fake,disc_real):
# loss、
disc_loss_real = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=disc_real,labels = tf.ones([batch_size],dtype=tf.int32)))
disc_loss_fake = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits = disc_fake,labels = tf.zeros([batch_size],dtype = tf.int32)))
return disc_loss_real + disc_loss_fake
optimizer_gen = tf.optimizers.Adam(learning_rate = lr_generator)
optimizer_disc = tf.optimizers.Adam(learning_rate = lr_descriminator)
def run_optimization(real_images):
real_images = real_images * 2. -1 #(-1,1)范围内
noise = np.random.normal(-1.,1.,size=[batch_size,noise_dim])
# 通过随机生成噪声数据,用正太分布的噪声去生成图片,生成器的作用就是生成fake images
with tf.GradientTape() as g:
fake_images = generator(noise,is_training = True)
disc_fake = discriminator(fake_images,is_training = True)
disc_real = discriminator(real_images,is_training = True)
disc_loss = discriminator_loss(disc_fake,disc_real)
gradients_disc = g.gradient(disc_loss,discriminator.trainable_vatiables)
optimizer_disc.apply_gradients(zip(gradients_disc,discriminator.trainable_variables))
# 由于上面判别器的梯度已经进行更新了,这里又用到判别器来判别fake_images,上面会影响这里判别器的判断,所以不能直接用前面生成好的噪声数据
# 我认为判别器梯度更新在前应该有利于收敛吧,不然最开始先更新生成器梯度的话,最开始训练的时候效果应该不太好
noise = np.random.normal(-1.,1.,size = [batch_size,noise_dim]).astype(np.float32)
with tf.GradientTape() as g:
fake_images = generator(noise,is_training = True)
disc_fake = discriminator(fake_images)
gen_loss = generator_loss(disc_fake)
gradients_gen = g.gradient(gen_loss,generator.trainable_variables)
optimizer_gen.apply_gradients(zip(gradients_gen, generator.trainable_variables))
return gen_loss,disc_loss
for step, (batch_x, _) in enumerate(train_data.take(training_steps + 1)):
if step == 0:
noise = np.random.normal(-1., 1., size=[batch_size, noise_dim]).astype(np.float32)
gen_loss = generator_loss(discriminator(generator(noise)))
disc_loss = discriminator_loss(discriminator(batch_x), discriminator(generator(noise)))
print("initial: gen_loss: %f, disc_loss: %f" % (gen_loss, disc_loss))
continue
gen_loss, disc_loss = run_optimization(batch_x)
if step % display_step == 0:
print("step: %i, gen_loss: %f, disc_loss: %f" % (step, gen_loss, disc_loss))
# 保存权重
generator.save_weights(file_path = "./gen.ckpt")
discriminator.save_weights(file_path = "./disc.ckpt")
[tensorflow] tf2.0 简单例子的更多相关文章
- 三分钟快速上手TensorFlow 2.0 (后续)——扩展和附录
TensorFlow Hub 模型复用 TF Hub 网站 打开主页 https://tfhub.dev/ ,在左侧有 Text.Image.Video 和 Publishers 等选项,可以选取关注 ...
- 三分钟快速上手TensorFlow 2.0 (下)——模型的部署 、大规模训练、加速
前文:三分钟快速上手TensorFlow 2.0 (中)——常用模块和模型的部署 TensorFlow 模型导出 使用 SavedModel 完整导出模型 不仅包含参数的权值,还包含计算的流程(即计算 ...
- 『TensorFlow2.0正式版教程』极简安装TF2.0正式版(CPU&GPU)教程
0 前言 TensorFlow 2.0,今天凌晨,正式放出了2.0版本. 不少网友表示,TensorFlow 2.0比PyTorch更好用,已经准备全面转向这个新升级的深度学习框架了. 本篇文章就 ...
- 『TensorFlow2.0正式版』TF2.0+Keras速成教程·零:开篇简介与环境准备
此篇教程参考自TensorFlow 2.0 + Keras Crash Course,在原文的基础上进行了适当的总结与改编,以适应于国内开发者的理解与使用,水平有限,如果写的不对的地方欢迎大家评论指出 ...
- [转帖]谷歌TF2.0凌晨发布!“改变一切,力压PyTorch”
谷歌TF2.0凌晨发布!“改变一切,力压PyTorch” https://news.cnblogs.com/n/641707/ 投递人 itwriter 发布于 2019-10-01 12:38 评论 ...
- 极简安装 TensorFlow 2.0 GPU
前言 之前写了几篇关于 TensorFlow 1.x GPU 版本安装的博客,但几乎没怎么学习过.之前基本在搞 Machine Learning 和 Data Mining 方面的东西,极少用到 NN ...
- 三分钟快速上手TensorFlow 2.0 (上)——前置基础、模型建立与可视化
本文学习笔记参照来源:https://tf.wiki/zh/basic/basic.html 学习笔记类似提纲,具体细节参照上文链接 一些前置的基础 随机数 tf.random uniform(sha ...
- 使用TensorFlow v2.0构建卷积神经网络
使用TensorFlow v2.0构建卷积神经网络. 这个例子使用低级方法来更好地理解构建卷积神经网络和训练过程背后的所有机制. CNN 概述 MNIST 数据集概述 此示例使用手写数字的MNIST数 ...
- Tensorflow 2.0 深度学习实战 —— 详细介绍损失函数、优化器、激活函数、多层感知机的实现原理
前言 AI 人工智能包含了机器学习与深度学习,在前几篇文章曾经介绍过机器学习的基础知识,包括了监督学习和无监督学习,有兴趣的朋友可以阅读< Python 机器学习实战 >.而深度学习开始只 ...
随机推荐
- 在windwo server2008服务器上配置ftp服务器、及配置phpstrom工具、实现项目同步。
在windwo server2008服务器上配置ftp服务器.及配置phpstrom工具.实现项目同步. 在windwo server2008服务器上配置ftp服务器 参考该篇文章:http://bl ...
- Sharepoint2013搜索学习笔记之修改搜索拓扑(三)
搜索服务新建好之后可以从管理中心,应用程序管理页面,进入搜索服务的管理页面,进入管理页面之后可以看到当前sharepoint场的搜索拓扑结构. 如果sharepoint场内有多台服务器,需要将搜索组件 ...
- 火狐浏览器httprequest插件添加和使用方法(适用于前后台分离,测试后台接口)
第一步:打开火狐浏览器工具栏找到添加组件 1.如图1点击添加组件 第二步:添加组件Httprequest 1.如图2,检索Httprequest 2.如图3,将组件添加到火狐浏览器中 3.如图3.5, ...
- 开源:基于Android的室内定位WiFi,iBeacon数据采集和定位脚本
最近有同学联系我,也在一些群里看到有新手同学挣扎在怎么获取定位数据,不知从何下手.所以整理并开源这个基于Android的数据采集软件和基于python的KNN定位demo,算是为新手同学建立一个Bas ...
- ai技术体系
- 洛谷P2257 YY的GCD(莫比乌斯反演)
传送门 原来……莫比乌斯反演是这么用的啊……(虽然仍然不是很明白) 首先,题目所求如下$$\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)=prim]$$ 我们设$f(d)$表示$g ...
- Go 基础(非常基础)
// package main 和 main 函数 package main func main() {} //每一个.go文件都需要有 package 关键词,并且声明在文件顶部 package p ...
- Java获取路径
"./" 代表当前目录,"../"代表上级目录 后续更新!!!
- CC06:像素翻转
题目 有一副由NxN矩阵表示的图像,这里每个像素用一个int表示,请编写一个算法,在不占用额外内存空间的情况下(即不使用缓存矩阵),将图像顺时针旋转90度. 给定一个NxN的矩阵,和矩阵的阶数N,请返 ...
- 字典排序permutation
理论 C++ 中的next_permutation 一般作为正序全排列的使用规则,其实这个就是正序字典排序的实现. 比如我们要对 列表 [1,2,3] 做full permutation 一般使用递 ...