SDUT 1309 不老的传说问题 (区间DP)
题意:
有一个环形序列,n个数字表示一种颜色,要求将白板环刷成一模一样的环,限制是每次最多只能刷连续的K个位置,问最少需要刷几次?
思路:
跟2008长春那道painter string 差不多。只是这次是个环,难度也是没有提升的,只需要变成一个2*n-1个数字的序列就可以了。
考虑区间[L,R],如果[L]和[L+1,R]中的某一个颜色相同,才有可能减少刷的次数。那么从左到右枚举这个和[L]相同颜色的位置,[L,R]的次数就可以变成[L+1,k]+[k+1,R]了。可以想象成[L]是依靠另一个同颜色的位置来获得免刷的可能,则这个位置必定是距离它K个位置之内的。如果长度为K的某一段区间[L,L+K-1]中有多段分散的同颜色的,有没有可能是刷一次那个颜色,然后其他不同颜色的再截成一段一段的,将次数给组合起来呢?其实这种情况在枚举依靠位置k的时候已经考虑了,假设你选择依靠[L+K-1],那么[L+1,L+K-2]中还有和[L]是同颜色的,而区间[L+1,L+K-1]已经是最优,其他的同色位置能不能也依靠[L+K-1]已经不是本次要考虑的问题了,本次只考虑能否让[L]依靠其他的位置从而获得免刷。
//#include <bits/stdc++.h>
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <map>
#include <algorithm>
#include <vector>
#include <iostream>
#define pii pair<int,int>
#define INF 0x7f3f3f3f
#define LL long long
using namespace std;
const double PI = acos(-1.0);
const int N=;
int n, c, K;
int dp[N][N], a[N];
int cal()
{
memset(dp,,sizeof(dp));
for(int i=; i<=*n; i++)
for(int j=i; j<=*n; j++)
dp[i][j]=INF;
for(int j=; j<*n; j++)
{
for(int i=j; i>; i--)
{
dp[i][j]=dp[i+][j]+;
for(int k=i+; k<i+K&&k<=j; k++ )
{
if(a[i]!=a[k]) continue;
dp[i][j]=min(dp[i][j], dp[i+][k]+dp[k+][j]);
}
}
}
int ans=INF;
for(int i=; i<=n; i++)
{
ans=min(ans, dp[i][i+n-]);
}
return ans;
} int main()
{
//freopen("input.txt","r",stdin);
while(~scanf("%d%d%d",&n,&c,&K))
{
for(int i=; i<=n; i++)
{
scanf("%d",&a[i]);
a[i+n]=a[i];
}
cout<<cal()<<endl;
}
return ;
}
AC代码
SDUT 1309 不老的传说问题 (区间DP)的更多相关文章
- stdu1309(不老的传说)
题目链接:http://acm.sdut.edu.cn/onlinejudge2/index.php/Home/Index/problemdetail/pid/1309.html 不老的传说问题 Ti ...
- 【BZOJ-4380】Myjnie 区间DP
4380: [POI2015]Myjnie Time Limit: 40 Sec Memory Limit: 256 MBSec Special JudgeSubmit: 162 Solved: ...
- 【POJ-1390】Blocks 区间DP
Blocks Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 5252 Accepted: 2165 Descriptio ...
- 区间DP LightOJ 1422 Halloween Costumes
http://lightoj.com/volume_showproblem.php?problem=1422 做的第一道区间DP的题目,试水. 参考解题报告: http://www.cnblogs.c ...
- BZOJ1055: [HAOI2008]玩具取名[区间DP]
1055: [HAOI2008]玩具取名 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1588 Solved: 925[Submit][Statu ...
- poj2955 Brackets (区间dp)
题目链接:http://poj.org/problem?id=2955 题意:给定字符串 求括号匹配最多时的子串长度. 区间dp,状态转移方程: dp[i][j]=max ( dp[i][j] , 2 ...
- HDU5900 QSC and Master(区间DP + 最小费用最大流)
题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5900 Description Every school has some legends, ...
- BZOJ 1260&UVa 4394 区间DP
题意: 给一段字符串成段染色,问染成目标串最少次数. SOL: 区间DP... DP[i][j]表示从i染到j最小代价 转移:dp[i][j]=min(dp[i][j],dp[i+1][k]+dp[k ...
- 区间dp总结篇
前言:这两天没有写什么题目,把前两周做的有些意思的背包题和最长递增.公共子序列写了个总结.反过去写总结,总能让自己有一番收获......就区间dp来说,一开始我完全不明白它是怎么应用的,甚至于看解题报 ...
随机推荐
- win+apache网站打开很慢的解决笔记
为了图方便,直接把wamp的vhost配置文件复制到新apache2.2.25上,结果打开静态页速度都非常慢. <VirtualHost *:> ServerAdmin www.fuck2 ...
- Bind 远程连接DNS服务器时出现 rndc: connection to remote host closed
使用命令:rndc -s 192.168.1.2 status 连接远程的bind 搭建的DNS服务器时出现下面的错误: rndc: connection to remote host close ...
- Spring入门第八课
看如下代码 <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http:// ...
- 小程序与Spring项目数据交互
上一篇博客刚说了利用Postman来测试Spring Boot项目,测试通过后就可以和小程序进行交互了. 首先要在微信开发者工具里面,点击"详情",勾选上"不校验合法域名 ...
- update-alternatives --Install
up vote 1 down vote favorite I typed: sudo update-alternatives --install "/usr/bin/java" & ...
- AGC001 C - Shorten Diameter【枚举】
一开始没看到要保证最后是树--所以一定要从叶子开始删 枚举重心,如果k是偶数,那么按当前重心提起来deep大于k/2的全都要切掉,这样枚举重心然后取min即可 奇数的话就是枚举直径中间的边,然后从两边 ...
- 洛谷P3768 简单的数学题(莫比乌斯反演+狄利克雷卷积+杜教筛)
传送门 不会…… 两篇加在一起都看不懂…… https://www.cnblogs.com/cellular-automaton/p/8241128.html https://www.luogu.or ...
- Java基础--基本规则、语法
一.关键字.保留字.标识符.常量.变量 1.关键字:使用某种语言赋予特殊含义的单词. 2.保留字:没有赋予特殊含义,但以后可能会使用的单词. 3.标识符:自定义的单词,以数字.字母.下划线以及$符组成 ...
- 我的省选 Day -15
Day -15 23:22:45 还有十几天就要去参加省选啦~,今天开始写日记记录一下,所以今天是第负十五天. 今天是阶段考的第二天(由于奥赛不用考试的我7:30才慢悠悠地到机房 早上学习动态DP, ...
- Nacos深入浅出(八)
Nacos-spring-context.java 感觉这个后台要比之前的Nacos复杂多了,涉及到很多基础的概念,慢慢看,这个后面慢慢更新解析过程 看到他的目录结构一个是基于注解,一个是XML的解析 ...