题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3027

就是 (1+x+x2+...+xm[i]) 乘起来;

原来想和背包一样做,然而时限很短,数组也开不了很多,本来以为勉强一下也可以,后来突然发现不行...

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int const xn=1e7+,mod=;
int n,a,b,s[xn],m;
int rd()
{
int ret=,f=; char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=; ch=getchar();}
while(ch>=''&&ch<='')ret=(ret<<)+(ret<<)+ch-'',ch=getchar();
return f?ret:-ret;
}
int upt(int x){while(x>=mod)x-=mod; while(x<)x+=mod; return x;}
int main()
{
n=rd(); a=rd(); b=rd(); m=rd();
for(int i=;i<=m;i++)s[i]=i+;
for(int i=m+;i<=b;i++)s[i]=s[m];//
for(int i=;i<=n;i++)
{
m=rd();
//mx=min(mx+m[i],b);
for(int j=b;j>=;j--)//
if(j-m->=)s[j]=upt(s[j]-s[j-m-]);
for(int j=;j<=b;j++)s[j]=upt(s[j]+s[j-]);
}
int ans=s[b];
if(a)ans=upt(ans-s[a-]);
printf("%d\n",ans);
return ;
}

TLE

首先,要化简这个多项式,得到 ∏(1-xm[i]+1) / (1-x)n

可以把分子和分母分开,分母就是熟悉的 ∑ C(n+i-1,n-1)*xi

而分子一共只有 n 项,可以 2n 搜出每个系数;

然后把二者组合在一起,对于搜出的 k * xy ,对答案有贡献还需要把 xy 变成 xa ~ xb

所以对应分母多项式的 xa-y ~ xb-y 的系数,是连续的组合数求和,杨辉三角里的一列;

但是模数不是质数,所以组合数不好算;

参考TJ,竟然可以对组合数和模数都乘 n!,就可以 O(n) 直接乘得到组合数了,最后把答案除以 n! 即可;

如果把搜到的系数存下来,最后遍历,复杂度反而成了 O(bn) ... 不如直接在搜索里计算,有值才算上,复杂度 O(n*2n)。

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
int const xn=,xm=1e7+,mod=;
int n,a,b,m[xn];
ll fac,p,ans;
int rd()
{
int ret=,f=; char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=; ch=getchar();}
while(ch>=''&&ch<='')ret=(ret<<)+(ret<<)+ch-'',ch=getchar();
return f?ret:-ret;
}
ll upt(ll x){while(x>=mod)x-=mod; while(x<)x+=mod; return x;}
ll C(int n,int m)
{
if(n<m)return ;//!
ll ret=;
for(int i=n-m+;i<=n;i++)ret=(ret*i)%p;
return ret;
}
void dfs(int x,int s,int t)
{
if(x==n+)
{
ans+=s*(C(n+b-t,n)-C(n+a-t-,n)); ans=ans%p;
return;
}
dfs(x+,s,t);
dfs(x+,-s,t+m[x]+);
}
int main()
{
n=rd(); a=rd(); b=rd(); fac=;
for(int i=;i<=n;i++)m[i]=rd(),fac*=i;
p=(ll)fac*mod;
dfs(,,);
/*
for(int y=0;y<=b;y++)
{
ll tmp=upt(C(n+b-y,n)-C(n+a-y-1,n));
ans=(ans+tmp*f[y])%p;
}
*/
if(ans<)ans+=p;
printf("%lld\n",ans/fac);
return ;
}

bzoj 3027 [Ceoi2004] Sweet —— 生成函数的更多相关文章

  1. bzoj 3027 [Ceoi2004]Sweet——生成函数

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3027 化式子到 ( \mul_{i=1}^{n}(1-x^(m[i]+1)) ) / (1- ...

  2. bzoj 3027: [Ceoi2004]Sweet (生成函数)

    题目传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=3027. 题目大意:有$n$种数,每种有$C_i$个,问你在这些数中取出$[l,r]$个 ...

  3. bzoj 3027: [Ceoi2004]Sweet【生成函数+组合数学】

    首先根据生成函数的套路,这个可以写成: \[ \prod_{i=1}^{n}(1+x^1+x^2+...+x^{c[i]}) \] 然后化简 \[ =\prod_{i=1}^{n}\frac{1-x^ ...

  4. BZOJ 3027: [Ceoi2004]Sweet

    容斥 #include<cstdio> using namespace std; int a,b,n,m[15]; long long ans=0,mod=2004; long long ...

  5. 【BZOJ 3027】 3027: [Ceoi2004]Sweet (容斥原理+组合计数)

    3027: [Ceoi2004]Sweet Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 71  Solved: 34 Description John ...

  6. [BZOJ3027][Ceoi2004]Sweet 容斥+组合数

    3027: [Ceoi2004]Sweet Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 135  Solved: 66[Submit][Status] ...

  7. BZOJ3027 - [CEOI2004]Sweet

    Portal Description 给出\(n(n\leq10),a,b(a,b\leq10^7)\)与\(\{c_n\}(c_i\leq10^6)\),求使得\(\sum_{i=1}^n x_i ...

  8. 2018.12.30 bzoj3027: [Ceoi2004]Sweet(生成函数+搜索)

    传送门 生成函数好题. 题意简述:给出n个盒子,第iii个盒子里有mim_imi​颗相同的糖(但不同盒子中的糖不相同),问有多少种选法可以从各盒子中选出数量在[a,b][a,b][a,b]之间的糖果. ...

  9. BZOJ 3027 Sweets 生成函数,容斥

    Description John得到了n罐糖果.不同的糖果罐,糖果的种类不同(即同一个糖果罐里的糖果种类是相同的,不同的糖果罐里的糖果的种类是不同的).第i个糖果罐里有 mi个糖果.John决定吃掉一 ...

随机推荐

  1. MySQL命令学习(一)

    今天我们来学习一下MySQL中的经常使用命令(MySQL中的命令keyword是不区分大写和小写的): (1)show databases; 显示MySQL中的全部database (2)create ...

  2. C#复习总结6 (需要进一步复习)

    第十七章 泛型 什么是泛型 泛型是为了适应多种不同种类的数据类型而存在的.有了它之后,我们可以不用为不同的数据类型而单独写一个适配.这样很麻烦. 类型不是对象,而是对象的模板.泛型类型也不是类型,而是 ...

  3. PHP几种抓取网络数据的常见方法

    //本小节的名称为 fsockopen,curl与file_get_contents,具体是探讨这三种方式进行网络数据输入输出的一些汇总.关于 fsockopen 前面已经谈了不少,下面开始转入其它. ...

  4. IDEA搭建Android wear开发环境,Android wear,I&#39;m comming!

    随着google公布了android wear这个东西.然后又有了三星的gear,LG的G watch以及moto 360,苹果由公布了apple watch.未来可能在智能手表行业又有一场战争. 当 ...

  5. C# 比较两个数组中的内容是否相同的算法

    这里要比较的是两个数组中的内容是否相同,以int数组为例 int[] Arraya=new[] {1,2,3,4,5} int[] Arrayb=new[] {5,3,2,1,4} 以上两个数组内的值 ...

  6. LeetCode120——Triangle

    Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent n ...

  7. windows常用快捷键(转载)

    f1 显示当前程序或者windows的帮助内容. f2 当你选中一个文件的话,这意味着“重命名” f3 当你在桌面上的时候是打开“查找:所有文件” 对话框 f10或alt 激活当前程序的菜单栏 win ...

  8. android-async-http框架

    android-async-http 简单介绍:An asynchronous, callback-based Http client for Android built on top of Apac ...

  9. iOS8 Push Notifications

    本文转载至 http://blog.csdn.net/pjk1129/article/details/39551887   原贴地址:https://parse.com/tutorials/ios-p ...

  10. switch多分枝语句

    package lianxi; //switch多分枝语句 import java.util.Scanner; public class GetSwitch { public static void ...