[luogu_P2045]方格取数加强版
[luogu_P2045]方格取数加强版
试题描述
给出一个 \(n \times n\) 的矩阵,每一格有一个非负整数 \(A_{i,j},(A_{i,j} \le 1000)\) 现在从 \((1,1)\) 出发,可以往右或者往下走,最后到达 \((n,n)\),每达到一格,把该格子的数取出来,该格子的数就变成 \(0\),这样一共走 \(K\) 次,现在要求 \(K\) 次所达到的方格的数的和最大
输入
第一行两个数 \(n,k\)(\(1 \le n \le 50, 0 \le k \le 10\))
接下来 \(n\) 行,每行 \(n\) 个数,分别表示矩阵的每个格子的数
输出
一个数,为最大和
输入示例
3 1
1 2 3
0 2 1
1 4 2
输出示例
11
数据规模及约定
见“试题描述”和“输入”
题解
网格图拆点后建边,源点到 \((1, 1)\) 容量限制为 \(k\),跑最小费用最大流。
假设点 \(i\) 拆成 \(in_i\) 和 \(out_i\),则在 \(in_i\) 和 \(out_i\) 之间连两条边,一条容量为 \(1\),费用为对应方格中的数的相反数,另一条容量无穷费用为 \(0\)。
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <algorithm>
#include <queue>
using namespace std;
#define rep(i, s, t) for(int i = (s); i <= (t); i++)
#define dwn(i, s, t) for(int i = (s); i >= (t); i--)
int read() {
int x = 0, f = 1; char c = getchar();
while(!isdigit(c)){ if(c == '-') f = -1; c = getchar(); }
while(isdigit(c)){ x = x * 10 + c - '0'; c = getchar(); }
return x * f;
}
#define maxn 5010
#define maxm 40010
#define oo 2147483647
struct Edge {
int from, to, flow, cost;
Edge() {}
Edge(int _1, int _2, int _3, int _4): from(_1), to(_2), flow(_3), cost(_4) {}
};
struct ZKW {
int n, m, s, t, cost, ans, head[maxn], nxt[maxm];
Edge es[maxm];
int d[maxn];
deque <int> Q;
bool inq[maxn];
bool vis[maxn];
void init() {
m = 0; memset(head, -1, sizeof(head));
return ;
}
void setn(int _) {
n = _;
return ;
}
void AddEdge(int a, int b, int c, int d) {
es[m] = Edge(a, b, c, d); nxt[m] = head[a]; head[a] = m++;
es[m] = Edge(b, a, 0, -d); nxt[m] = head[b]; head[b] = m++;
return ;
}
bool BFS() {
rep(i, 1, n) d[i] = oo;
d[t] = 0;
Q.push_back(t); inq[t] = 1;
while(!Q.empty()) {
int u = Q.front(); Q.pop_front(); inq[u] = 0;
for(int i = head[u]; i != -1; i = nxt[i]) {
Edge& e = es[i^1];
if(d[e.from] > d[u] + e.cost && e.flow) {
d[e.from] = d[u] + e.cost;
if(!inq[e.from]) {
inq[e.from] = 1;
if(Q.empty() || d[e.from] <= d[Q.front()]) Q.push_front(e.from);
else Q.push_back(e.from);
}
}
}
}
if(d[s] == oo) return 0;
cost = d[s];
return 1;
}
int DFS(int u, int a) {
if(u == t || !a) return ans += cost * a, a;
if(vis[u]) return 0;
vis[u] = 1;
int flow = 0, f;
for(int i = head[u]; i != -1; i = nxt[i]) {
Edge& e = es[i];
if(d[e.to] == d[u] - e.cost && (f = DFS(e.to, min(a, e.flow)))) {
flow += f; a -= f;
e.flow -= f; es[i^1].flow += f;
if(!a) return flow;
}
}
return flow;
}
int MaxFlow(int _s, int _t) {
s = _s; t = _t;
int flow = 0, f;
while(BFS())
do {
memset(vis, 0, sizeof(vis));
f = DFS(s, oo);
flow += f;
} while(f);
return flow;
}
} sol;
#define maxr 55
int CntP;
struct Point {
int id;
Point(): id(0) {}
int p() { return id ? id : id = ++CntP; }
} In[maxr][maxr], Out[maxr][maxr], S, T;
int main() {
int n = read(), k = read();
sol.init();
sol.AddEdge(S.p(), In[1][1].p(), k, 0);
sol.AddEdge(Out[n][n].p(), T.p(), oo, 0);
rep(i, 1, n) rep(j, 1, n) {
sol.AddEdge(In[i][j].p(), Out[i][j].p(), 1, -read());
sol.AddEdge(In[i][j].p(), Out[i][j].p(), oo, 0);
if(i < n) sol.AddEdge(Out[i][j].p(), In[i+1][j].p(), oo, 0);
if(j < n) sol.AddEdge(Out[i][j].p(), In[i][j+1].p(), oo, 0);
}
sol.setn(CntP);
sol.MaxFlow(S.p(), T.p());
printf("%d\n", -sol.ans);
return 0;
}
[luogu_P2045]方格取数加强版的更多相关文章
- P2045 方格取数加强版
P2045 方格取数加强版 题目描述 给出一个n*n的矩阵,每一格有一个非负整数Aij,(Aij <= 1000)现在从(1,1)出发,可以往右或者往下走,最后到达(n,n),每达到一格,把该格 ...
- Luogu2045 方格取数加强版
题目描述 给出一个n*n的矩阵,每一格有一个非负整数Aij,(Aij <= 1000)现在从(1,1)出发,可以往右或者往下走,最后到达(n,n),每达到一格,把该格子的数取出来,该格子的数就变 ...
- Luogu2045 方格取数加强版(K取方格数) 费用流
题目传送门 题意:给出一个$N \times N$的方格,每个格子中有一个数字.你可以取$K$次数,每次取数从左上角的方格开始,每一次只能向右或向下走一格,走到右下角结束,沿路的方格中的数字将会被取出 ...
- 洛谷 P2045 方格取数加强版【费用流】
题目链接:https://www.luogu.org/problemnew/show/P2045 题目描述 给出一个n*n的矩阵,每一格有一个非负整数Aij,(Aij <= 1000)现 ...
- P2045 方格取数加强版 最大费用最大流
$ \color{#0066ff}{ 题目描述 }$ 给出一个n*n的矩阵,每一格有一个非负整数Aij,(Aij <= 1000)现在从(1,1)出发,可以往右或者往下走,最后到达(n,n),每 ...
- poj 3422 洛谷P2045 K取方格数(方格取数加强版)
Description: 给出一个n*n的矩阵,每一格有一个非负整数Aij,(Aij <= 1000)现在从(1,1)出发,可以往右或者往下走,最后到达(n,n),每达到一格,把该格子的数取出来 ...
- [洛谷P2045]方格取数加强版
题目大意:有一个n*n的矩阵,每个格子有一个非负整数,规定一个人从(1,1)开始,只能往右或下走,走到(n,n)为止,并把沿途的数取走,取走后数变为0.这个人共取n次,求取得的数的最大总和. 解题思路 ...
- 洛谷 - P2045 - 方格取数加强版 - 费用流
原来这种题的解法是费用流. 从一个方格的左上走到右下,最多走k次,每个数最多拿走一次. 每次走动的流量设为1,起始点拆点成限制流量k. 每个点拆成两条路,一条路限制流量1,费用为价值相反数.另一条路无 ...
- bzoj P2045 方格取数加强版【最大费用最大流】
今天脑子不太清醒,把数据范围看小了一直TTTTLE-- 最大费用最大流,每个格子拆成两个(x,y),(x,y)',(x,y)向(x,y)'连一条费用a[x][y]流量1的边表示选的一次,再连一条费用0 ...
随机推荐
- 【洛谷3759】[TJOI2017] 不勤劳的图书管理员(树套树)
点此看题面 大致题意: 给定一个序列,每个元素有两个属性\(a_i\)和\(v_i\),每次操作改变两个元素的位置,求每次操作后\(\sum{v_i+v_j}[i<j,a_i>a_j]\) ...
- 【转】IOS开发网络篇之──ASIHTTPRequest详解
ASIHTTPRequest 详解, http 请求终结者 版权归旺财勇士所有〜转载需声名〜 原贴地地址:http://wiki.magiche.net/pages/viewpage.action?p ...
- python_51_函数返回值1
def test1(): '只执行return以前的' print('test1返回值为0 ') return 0 print('这句不会被执行的') x=test1() print(x)#值为0 d ...
- click
click简介 Click是一个Python包,用于以可组合的方式创建漂亮的命令行界面,只需要很少的代码.这是“命令行界面创建工具包”.它具有高度可配置性,但具有开箱即用的合理默认值. 点击三点: 任 ...
- JavaScript中的match方法和search方法
search在一个字串对象(string object)中查找关键词字串(规范表达式,regular expression),若匹配(即在目标字串中成功找到关键词)则返回关键词在目标字串中第一次出现的 ...
- hello spring boot neo4j
新建springboot 项目: https://www.cnblogs.com/lcplcpjava/p/7406253.html bug fixs: 1. Maven Configuration ...
- 5.7 并行复制配置 基于GTID 搭建中从 基于GTID的备份与恢复,同步中断处理
5.7 并行复制配置 基于GTID 搭建中从 基于GTID的备份与恢复,同步中断处理 这个文章包含三个部分 1:gtid的多线程复制2:同步中断处理3:GTID的备份与恢复 下面文字相关的东西 大部分 ...
- linux 下备份mysql数据库
今天老板让备份数据库没办法自己折腾吧,下面把折腾的结果总结总结. 数据库备份思路: 1.编写脚本 2.执行脚本 哈哈,是不是很简单,打开冰箱,放入大象,关上.下面我是具体操作. 一.编写脚本 1.设 ...
- 52shaidan.net
52shaidan.net 52gendan.net 朋友的域名
- thinkphp 3.2.3 - Route.class.php 解析(路由匹配)
class Route { public static function check(){ $depr = C('URL_PATHINFO_DEPR'); // '/' $regx = preg_re ...