[luogu_P2045]方格取数加强版

试题描述

给出一个 \(n \times n\) 的矩阵,每一格有一个非负整数 \(A_{i,j},(A_{i,j} \le 1000)\) 现在从 \((1,1)\) 出发,可以往右或者往下走,最后到达 \((n,n)\),每达到一格,把该格子的数取出来,该格子的数就变成 \(0\),这样一共走 \(K\) 次,现在要求 \(K\) 次所达到的方格的数的和最大

输入

第一行两个数 \(n,k\)(\(1 \le n \le 50, 0 \le k \le 10\))

接下来 \(n\) 行,每行 \(n\) 个数,分别表示矩阵的每个格子的数

输出

一个数,为最大和

输入示例

3 1
1 2 3
0 2 1
1 4 2

输出示例

11

数据规模及约定

见“试题描述”和“输入

题解

网格图拆点后建边,源点到 \((1, 1)\) 容量限制为 \(k\),跑最小费用最大流。

假设点 \(i\) 拆成 \(in_i\) 和 \(out_i\),则在 \(in_i\) 和 \(out_i\) 之间连两条边,一条容量为 \(1\),费用为对应方格中的数的相反数,另一条容量无穷费用为 \(0\)。

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <algorithm>
#include <queue>
using namespace std;
#define rep(i, s, t) for(int i = (s); i <= (t); i++)
#define dwn(i, s, t) for(int i = (s); i >= (t); i--) int read() {
int x = 0, f = 1; char c = getchar();
while(!isdigit(c)){ if(c == '-') f = -1; c = getchar(); }
while(isdigit(c)){ x = x * 10 + c - '0'; c = getchar(); }
return x * f;
} #define maxn 5010
#define maxm 40010
#define oo 2147483647 struct Edge {
int from, to, flow, cost;
Edge() {}
Edge(int _1, int _2, int _3, int _4): from(_1), to(_2), flow(_3), cost(_4) {}
};
struct ZKW {
int n, m, s, t, cost, ans, head[maxn], nxt[maxm];
Edge es[maxm];
int d[maxn];
deque <int> Q;
bool inq[maxn];
bool vis[maxn]; void init() {
m = 0; memset(head, -1, sizeof(head));
return ;
}
void setn(int _) {
n = _;
return ;
} void AddEdge(int a, int b, int c, int d) {
es[m] = Edge(a, b, c, d); nxt[m] = head[a]; head[a] = m++;
es[m] = Edge(b, a, 0, -d); nxt[m] = head[b]; head[b] = m++;
return ;
} bool BFS() {
rep(i, 1, n) d[i] = oo;
d[t] = 0;
Q.push_back(t); inq[t] = 1;
while(!Q.empty()) {
int u = Q.front(); Q.pop_front(); inq[u] = 0;
for(int i = head[u]; i != -1; i = nxt[i]) {
Edge& e = es[i^1];
if(d[e.from] > d[u] + e.cost && e.flow) {
d[e.from] = d[u] + e.cost;
if(!inq[e.from]) {
inq[e.from] = 1;
if(Q.empty() || d[e.from] <= d[Q.front()]) Q.push_front(e.from);
else Q.push_back(e.from);
}
}
}
}
if(d[s] == oo) return 0;
cost = d[s];
return 1;
} int DFS(int u, int a) {
if(u == t || !a) return ans += cost * a, a;
if(vis[u]) return 0;
vis[u] = 1;
int flow = 0, f;
for(int i = head[u]; i != -1; i = nxt[i]) {
Edge& e = es[i];
if(d[e.to] == d[u] - e.cost && (f = DFS(e.to, min(a, e.flow)))) {
flow += f; a -= f;
e.flow -= f; es[i^1].flow += f;
if(!a) return flow;
}
}
return flow;
} int MaxFlow(int _s, int _t) {
s = _s; t = _t;
int flow = 0, f;
while(BFS())
do {
memset(vis, 0, sizeof(vis));
f = DFS(s, oo);
flow += f;
} while(f);
return flow;
}
} sol; #define maxr 55
int CntP;
struct Point {
int id;
Point(): id(0) {}
int p() { return id ? id : id = ++CntP; }
} In[maxr][maxr], Out[maxr][maxr], S, T; int main() {
int n = read(), k = read();
sol.init();
sol.AddEdge(S.p(), In[1][1].p(), k, 0);
sol.AddEdge(Out[n][n].p(), T.p(), oo, 0);
rep(i, 1, n) rep(j, 1, n) {
sol.AddEdge(In[i][j].p(), Out[i][j].p(), 1, -read());
sol.AddEdge(In[i][j].p(), Out[i][j].p(), oo, 0);
if(i < n) sol.AddEdge(Out[i][j].p(), In[i+1][j].p(), oo, 0);
if(j < n) sol.AddEdge(Out[i][j].p(), In[i][j+1].p(), oo, 0);
}
sol.setn(CntP); sol.MaxFlow(S.p(), T.p());
printf("%d\n", -sol.ans); return 0;
}

[luogu_P2045]方格取数加强版的更多相关文章

  1. P2045 方格取数加强版

    P2045 方格取数加强版 题目描述 给出一个n*n的矩阵,每一格有一个非负整数Aij,(Aij <= 1000)现在从(1,1)出发,可以往右或者往下走,最后到达(n,n),每达到一格,把该格 ...

  2. Luogu2045 方格取数加强版

    题目描述 给出一个n*n的矩阵,每一格有一个非负整数Aij,(Aij <= 1000)现在从(1,1)出发,可以往右或者往下走,最后到达(n,n),每达到一格,把该格子的数取出来,该格子的数就变 ...

  3. Luogu2045 方格取数加强版(K取方格数) 费用流

    题目传送门 题意:给出一个$N \times N$的方格,每个格子中有一个数字.你可以取$K$次数,每次取数从左上角的方格开始,每一次只能向右或向下走一格,走到右下角结束,沿路的方格中的数字将会被取出 ...

  4. 洛谷 P2045 方格取数加强版【费用流】

        题目链接:https://www.luogu.org/problemnew/show/P2045 题目描述 给出一个n*n的矩阵,每一格有一个非负整数Aij,(Aij <= 1000)现 ...

  5. P2045 方格取数加强版 最大费用最大流

    $ \color{#0066ff}{ 题目描述 }$ 给出一个n*n的矩阵,每一格有一个非负整数Aij,(Aij <= 1000)现在从(1,1)出发,可以往右或者往下走,最后到达(n,n),每 ...

  6. poj 3422 洛谷P2045 K取方格数(方格取数加强版)

    Description: 给出一个n*n的矩阵,每一格有一个非负整数Aij,(Aij <= 1000)现在从(1,1)出发,可以往右或者往下走,最后到达(n,n),每达到一格,把该格子的数取出来 ...

  7. [洛谷P2045]方格取数加强版

    题目大意:有一个n*n的矩阵,每个格子有一个非负整数,规定一个人从(1,1)开始,只能往右或下走,走到(n,n)为止,并把沿途的数取走,取走后数变为0.这个人共取n次,求取得的数的最大总和. 解题思路 ...

  8. 洛谷 - P2045 - 方格取数加强版 - 费用流

    原来这种题的解法是费用流. 从一个方格的左上走到右下,最多走k次,每个数最多拿走一次. 每次走动的流量设为1,起始点拆点成限制流量k. 每个点拆成两条路,一条路限制流量1,费用为价值相反数.另一条路无 ...

  9. bzoj P2045 方格取数加强版【最大费用最大流】

    今天脑子不太清醒,把数据范围看小了一直TTTTLE-- 最大费用最大流,每个格子拆成两个(x,y),(x,y)',(x,y)向(x,y)'连一条费用a[x][y]流量1的边表示选的一次,再连一条费用0 ...

随机推荐

  1. NOIP2018赛前停课集训记(10.24~11.08)

    前言 为了不久之后的\(NOIP2018\),我们的停课从今天(\(Oct\ 24th\))起正式开始了. 本来说要下周开始的,没想到竟提早了几天,真是一个惊喜.毕竟明天有语文考试.后天有科学考试,逃 ...

  2. 【转】iOS学习笔记(八)——iOS网络通信http之NSURLConnection

    移动互联网时代,网络通信已是手机终端必不可少的功能.我们的应用中也必不可少的使用了网络通信,增强客户端与服务器交互.这一篇提供了使用NSURLConnection实现http通信的方式. NSURLC ...

  3. Linux 开启关闭防火墙

    开放防火墙端口添加需要监听的端口 /sbin/iptables -I INPUT -p tcp --dport 8080 -j ACCEPT/sbin/iptables -I INPUT -p tcp ...

  4. pycharm 安装插件 支持markdown

    github项目中的README文件通常是md格式的,但是pycharm默认是不支持的,需要安装插件 进入settings中搜索plugins,然后在plugins中搜索markdown suppor ...

  5. MRCA|Wright–Fisher population genetic model|SNP rate

    (Panda has a high heterozygosity rate) 通过对mtDNA(为了预测SNP的密度)的分析,可知panda的多样性,当前全基因组数据才能完全建立模型. mitocho ...

  6. Ajax的学习记录

    Ajax学习笔记 1.同步与异步同步:客户端发送请求到服务端,当服务器返回响应之前,客户端都处于等待卡死状态异步:客户端发送请求到服务端,当服务器返回响应之前,客户端可以随意做其他事情,不会卡死 2. ...

  7. 通过jQuery遍历div里面的checkbox

    遍历: $('#queryUser2 input[type="checkbox"]:checked').each( function () { a = a + $(this).va ...

  8. SQL Server中Table字典数据的查询SQL示例代码

    SQL Server中Table字典数据的查询SQL示例代码 前言 在数据库系统原理与设计(第3版)教科书中这样写道: 数据库包含4类数据: 1.用户数据 2.元数据 3.索引 4.应用元数据 其中, ...

  9. MySQL数据库 crud语句 ifnull() 创建新账户 备份数据库 一对多关系 多对多(中间表) 外键约束 自关联 子查询注意事项 DML DDL DQL mysql面试题 truncate与delete的区别

    DML(data manipulation language): 它们是SELECT.UPDATE.INSERT.DELETE,就象它的名字一样,这4条命令是用来对数据库里的数据进行操作的语言 DDL ...

  10. django1.11文档 模型重点笔记

    模型最重要的属性是Manager. 它是Django 模型进行数据库查询操作的接口,并用于从数据库提取实例. 如果没有自定义Manager,则默认的名称为objects. Managers 只能通过模 ...