题目

将柱子的高度离散化$\DeclareMathOperator{\dp}{dp}$

设第 $i$ 根柱子实际高度是 $h_i$,离散化之后的高度是 $g_i$;第 $i$ 高的高度是 $H_i$,第 $i$ 段的长度为 $c_i$,即 $c_0 = H_0,c_i = H_i - H_{i-1} \quad i \ge 1$

设有三根柱子,高度分别为 $1, 4, 3$,则 $h = [1, 4, 3]$,$g = [0, 2, 1]$,$ H = [1, 3, 4]$,$c = [1, 2, 1]$ 。

$\dp[i][j]$ 表示第 $i$ 根柱子上「上下相邻的两块同色」最早出现在第 $j$ 段的方案数。

第 $i$ 根柱子上未出现相邻两块同色的情况用状态 $\dp[i][g_i+1]$ 表示

转移方程

$\dp[i][j]$

  1. $g_{i-1} \ge j$:$\dp[i][j] = \dp[i-1][j] \times 2^{\max(0, h_i - h_{i-1})}$
  2. $g_{i-1} < j$:$\dp[i][j] = \dp[i-1][g_{i-1} + 1] \times 2 \times (2^{c_j} -1) \times 2^{h_{i} - H_{j}}$

边界条件

$\dp[0][0] = (2^{c_0} - 2) \times 2^{h_0 - H_0}$

$\dp[0][j] = 2 \times (2^{c_j} - 1) \times 2^{h_0 - H_j} \quad 1 \le j \le g_0$

$\dp[0][g_0 + 1] = 2$

$\dp[i][g_i + 1]$

  1. $g_{i-1} \le g_i$:$\dp[i][g_i+1] = 2 \times \dp[i-1][g_{i-1} + 1]$
  2. $g_{i-1} > g_i$:$\dp[i][g_i + 1] = 2 \times \sum_{ g_i < j \le g_{i-1} + 1} \dp[i-1][j]$

AGC 26 D Histogram Coloring的更多相关文章

  1. Solution -「AGC 026D」Histogram Coloring

    \(\mathcal{Description}\)   Link.   有 \(n\) 列下底对齐的方格纸排成一行,第 \(i\) 列有 \(h_i\) 个方格.将每个方格染成黑色或白色,求使得任意完 ...

  2. AGC 025 B - RGB Coloring

    B - RGB Coloring Time limit : 2sec / Memory limit : 1024MB Score : 700 points Problem Statement Taka ...

  3. AtCoder Grand Contest 026 D - Histogram Coloring

    一列中有两个连续的元素,那么下一列只能选择选择正好相反的填色方案(因为连续的地方填色方案已经确定,其他地方也就确定了) 我们现将高度进行离散化到Has数组中,然后定义dp数组 dp[i][j] 表示前 ...

  4. AGC026D Histogram Coloring

    link 题意: 给定n列的方块,第i列高度$h_i$.现在要把它染成红蓝两色,要求满足:对于任意一个$2\times 2$的区域,恰有2个蓝色,2个红色.问方案数. $n\leq 100,h_i\l ...

  5. AGC 026 C - String Coloring

    题面在这里! 比较简单的折半搜索,推一下hash函数,要求正反最后相等就行了. #include<bits/stdc++.h> #define ll unsigned long long ...

  6. AGC 26 F Manju Game

    $\DeclareMathOperator{\sw}{sw}$ $\DeclareMathOperator{\sb}{sb}$ $\DeclareMathOperator{\dp}{dp}$ 用 $\ ...

  7. 【AtCoder】AGC026 题解

    A - Colorful Slimes 2 找相同颜色的一段,然后答案加上段长除2下取整 代码 #include <iostream> #include <cstdio> us ...

  8. DP 题集 2

    关于 DP 的一些题目 String painter 先区间 DP,\(dp[l][r]\) 表示把一个空串涂成 \(t[l,r]\) 这个子串的最小花费.再考虑 \(s\) 字符串,\(f[i]\) ...

  9. 5.2 CUDA Histogram直方图

    什么是Histogramming Histogramming是一种从大的数据集中提取典型特征和模式的方式. 在统计学中,直方图(英语:Histogram)是一种对数据分布情况的图形表示,是一种二维统计 ...

随机推荐

  1. 运维如何延续自己的职业生涯--萧田国2017年GOPS深圳站演讲内容

    正如 萧田国在2017年GOPS深圳站演讲所提及的,运维职业生涯规划,应该是T字型. 关于指导原则,正如腾讯好友@赵建春所言: 如果一个领域不能做到TOP,那就是一种伤害. 运维在编程.开发领域,能做 ...

  2. wing ide 注释

    ctrl-.是批量注视 ctrl->向前缩进 ctrl-<向后缩进

  3. Java 窗体的基本操作语句 JFrame

    package com.swift; import java.awt.Color; import java.awt.GridLayout; import java.util.Random; impor ...

  4. js常见问题总结归纳

    一.使用 typeof bar === "object" 来确定 bar 是否是对象的潜在陷阱是什么?如何避免这个陷阱? 首先typeof bar === "object ...

  5. 3170: [Tjoi2013]松鼠聚会

    Time Limit: 10 Sec  Memory Limit: 128 MB Submit: 1804  Solved: 968[Submit][Status][Discuss] Descript ...

  6. 打开POST传参的弹出窗口

    //穿件 function openPostPopWindow(url,param,target){ var $form = $("<form></form>&quo ...

  7. ZendFramework-2.4 源代码 - 关于MVC - Model层

    所谓的谓词Predicate // ------ 所谓的谓词 ------ // 条件 case.3 $where = new \Zend\Db\Sql\Where(); $expression = ...

  8. 使用python实现滑动验证码

    首先安装一个需要用到的模块 pip install social-auth-app-django 安装完后在终端输入pip list会看到 social-auth-app-django social- ...

  9. GNU中的关键字typeof

    如果你是 C++ 程序员,应该接触过 C++11 里的 decltype 操作符,它的作用是自动推导表达式的数据类型,以解决泛型编程中有些类型由模板参数决定而难以(甚至不可能)表示的问题.其实这个特性 ...

  10. 2、python中的数字

    第二篇开始谈谈python中的数据. 一.前言 python中的数字包含了整数.浮点数.复数三种.在python的早期版本,或许可以看到正数被分为长整数与短整数,后来被取消了,因此这里不作讨论.通常我 ...