题目

将柱子的高度离散化$\DeclareMathOperator{\dp}{dp}$

设第 $i$ 根柱子实际高度是 $h_i$,离散化之后的高度是 $g_i$;第 $i$ 高的高度是 $H_i$,第 $i$ 段的长度为 $c_i$,即 $c_0 = H_0,c_i = H_i - H_{i-1} \quad i \ge 1$

设有三根柱子,高度分别为 $1, 4, 3$,则 $h = [1, 4, 3]$,$g = [0, 2, 1]$,$ H = [1, 3, 4]$,$c = [1, 2, 1]$ 。

$\dp[i][j]$ 表示第 $i$ 根柱子上「上下相邻的两块同色」最早出现在第 $j$ 段的方案数。

第 $i$ 根柱子上未出现相邻两块同色的情况用状态 $\dp[i][g_i+1]$ 表示

转移方程

$\dp[i][j]$

  1. $g_{i-1} \ge j$:$\dp[i][j] = \dp[i-1][j] \times 2^{\max(0, h_i - h_{i-1})}$
  2. $g_{i-1} < j$:$\dp[i][j] = \dp[i-1][g_{i-1} + 1] \times 2 \times (2^{c_j} -1) \times 2^{h_{i} - H_{j}}$

边界条件

$\dp[0][0] = (2^{c_0} - 2) \times 2^{h_0 - H_0}$

$\dp[0][j] = 2 \times (2^{c_j} - 1) \times 2^{h_0 - H_j} \quad 1 \le j \le g_0$

$\dp[0][g_0 + 1] = 2$

$\dp[i][g_i + 1]$

  1. $g_{i-1} \le g_i$:$\dp[i][g_i+1] = 2 \times \dp[i-1][g_{i-1} + 1]$
  2. $g_{i-1} > g_i$:$\dp[i][g_i + 1] = 2 \times \sum_{ g_i < j \le g_{i-1} + 1} \dp[i-1][j]$

AGC 26 D Histogram Coloring的更多相关文章

  1. Solution -「AGC 026D」Histogram Coloring

    \(\mathcal{Description}\)   Link.   有 \(n\) 列下底对齐的方格纸排成一行,第 \(i\) 列有 \(h_i\) 个方格.将每个方格染成黑色或白色,求使得任意完 ...

  2. AGC 025 B - RGB Coloring

    B - RGB Coloring Time limit : 2sec / Memory limit : 1024MB Score : 700 points Problem Statement Taka ...

  3. AtCoder Grand Contest 026 D - Histogram Coloring

    一列中有两个连续的元素,那么下一列只能选择选择正好相反的填色方案(因为连续的地方填色方案已经确定,其他地方也就确定了) 我们现将高度进行离散化到Has数组中,然后定义dp数组 dp[i][j] 表示前 ...

  4. AGC026D Histogram Coloring

    link 题意: 给定n列的方块,第i列高度$h_i$.现在要把它染成红蓝两色,要求满足:对于任意一个$2\times 2$的区域,恰有2个蓝色,2个红色.问方案数. $n\leq 100,h_i\l ...

  5. AGC 026 C - String Coloring

    题面在这里! 比较简单的折半搜索,推一下hash函数,要求正反最后相等就行了. #include<bits/stdc++.h> #define ll unsigned long long ...

  6. AGC 26 F Manju Game

    $\DeclareMathOperator{\sw}{sw}$ $\DeclareMathOperator{\sb}{sb}$ $\DeclareMathOperator{\dp}{dp}$ 用 $\ ...

  7. 【AtCoder】AGC026 题解

    A - Colorful Slimes 2 找相同颜色的一段,然后答案加上段长除2下取整 代码 #include <iostream> #include <cstdio> us ...

  8. DP 题集 2

    关于 DP 的一些题目 String painter 先区间 DP,\(dp[l][r]\) 表示把一个空串涂成 \(t[l,r]\) 这个子串的最小花费.再考虑 \(s\) 字符串,\(f[i]\) ...

  9. 5.2 CUDA Histogram直方图

    什么是Histogramming Histogramming是一种从大的数据集中提取典型特征和模式的方式. 在统计学中,直方图(英语:Histogram)是一种对数据分布情况的图形表示,是一种二维统计 ...

随机推荐

  1. 【51nod1743】雪之国度(最小生成树+倍增)

    点此看题面 大致题意: 给你一张无向连通图,其中每条边的边权为这条边连接的两点的权值之差.每次询问两点之间是否存在两条不重复的路径,若存在则输出这两条路径上最大值的最小值. 大致思路 这题显然就是要让 ...

  2. 【转】IOS开发网络篇之──ASIHTTPRequest详解

    ASIHTTPRequest 详解, http 请求终结者 版权归旺财勇士所有〜转载需声名〜 原贴地地址:http://wiki.magiche.net/pages/viewpage.action?p ...

  3. 五、react中父子组件间如何传值

    1.父组件向子组件传递数据:父组件绑定属性值传给子组件,子组件通过this.props()接受. 2.子组件向父组件传递数据:子组件绑定一个方法,方法中通过this.props.父组件方法名(参数)传 ...

  4. SpringBoot2.X最佳实践《一》 之 SpringBoot2.x初体验

    SpringBoot2.X最佳实践 前言 本系列文章,从零基础接触  SpringBoot2.x新版本,基础入门使用,热部署,到整合各个主流框架Redis4.x,消息队列AciveMQ, Rocket ...

  5. elasticsearch 7 安装

    elasticsearch 安装 操作系统:CentOS Linux release 7.4 elasticsearch:elasticsearch-7.1.1 es7+centos7 1.软件下载 ...

  6. jsp 生成验证码代码

    调用方法:在jsp页面用图像标签便可以直接调用如下是标签代码<img border=0 src="image.jsp">,只需要把该代码发在验证码要显示的区域就可以了) ...

  7. docker-compose 使用

    Docker提供一个容器编排工具------>Docker Compose,它允许用户在一个模板(YAML格式)中定义一组相关联的应用容器,这组容器会根据配置模板中的"--link&q ...

  8. HTTP协议原理

    HTTP是一个客户端终端(用户)和服务器端(网站)请求和应答的标准(TCP).通过使用网页浏览器.网络爬虫或者其它的工具,客户端发起一个HTTP请求到服务器上指定端口(默认端口为80).我们称这个客户 ...

  9. Class:向传统类模式转变的构造函数

    前言 JS基于原型的'类',一直被转行前端的码僚们大呼惊奇,但接近传统模式使用class关键字定义的出现,却使得一些前端同行深感遗憾而纷纷留言:"还我独特的JS"."净搞 ...

  10. linux安装vmware出现kernel-header问题

    查看日志文件, cat /tmp/vmware-xiuyuan/vmware-modconfig-9996.log | more在日志文件中有这么几行:Setting header path for ...