Description

从山顶上到山底下沿着一条直线种植了n棵老树。当地的政府决定把他们砍下来。为了不浪费任何一棵木材,树被砍倒后要运送到锯木厂。木材只能按照一个方向运输:朝山下运。山脚下有一个锯木厂。另外两个锯木厂将新修建在山路上。你必须决定在哪里修建两个锯木厂,使得传输的费用总和最小。假定运输每公斤木材每米需要一分钱。任务你的任务是写一个程序:从标准输入读入树的个数和他们的重量与位置计算最小运输费用将计算结果输出到标准输出(2≤n≤20 000)

Solution

设\(S[i]\)为重量前缀和,\(Sd[i]\)为距离前缀和,\(d[i]\)为第\(i\)棵树到第\(i+1\)棵树的距离

那么第一个锯木厂费用:\(Cost[i]=Cost[i-1]+S[i-1]*d[i-1]\)

而到第二个锯木厂费用:\(W(i,j)=Cost[j]-Cost[i-1]-S[i-1]*(Sd[j]-Sd[i-1])\)

那么\(Ans=min\{Cost[j]+W(j+1,i)+W(i+1,n+1)\}\)

乱搞一下发现斜率式,此时\(i>k>j\),且\(k\)比\(j\) 优

\(\frac{S[j]*Sd[j]-S[k]*Sd[k]}{S[j]-S[k]}<Sd[i]\)

然后就完了

Tips:

​ 由于\(S[k]>S[j]\)所以\(S[j]-S[k]<0\) 把斜率式变形的时候记得变符号

​ 因为不知道在哪设锯木厂最优,用一个\(Ans\)变量随时更新,否则WA

​ 虽然答案在int范围,但是如果化除为乘的话中间结果要long long

Code

#include <cstdio>
#include <algorithm>
#define N 20010
using namespace std; int n,d[N],s[N],sd[N],cost[N],Ans;
int l,r,q[N]; inline int read(){
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
} inline void Init(){
n=read();
for(int i=1;i<=n;++i){
s[i]=s[i-1]+read(),d[i]=read();
sd[i]=sd[i-1]+d[i-1];
cost[i]=cost[i-1]+d[i-1]*s[i-1];
}
s[n+1]=s[n];
sd[n+1]=sd[n]+d[n];
cost[n+1]=cost[n]+d[n]*s[n];
} inline int f(int j,int k){return s[j]*sd[j]-s[k]*sd[k];}
inline int g(int j,int k){return s[j]-s[k];}
int h(int i,int j){return cost[n+1]-s[j]*(sd[i]-sd[j])-s[i]*(sd[n+1]-sd[i]);} inline void DP(){
l=r=1;Ans=1e9;
for(int i=1;i<=n;++i){
while(l<r&&f(q[l],q[l+1])>sd[i]*1ll*g(q[l],q[l+1])) l++;
int j=q[l];
Ans=min(Ans,h(i,j));
while(l<r&&f(q[r],i)*1ll*g(q[r-1],q[r])<g(q[r],i)*1ll*f(q[r-1],q[r])) r--;
q[++r]=i;
}
} int main(){
Init();
DP();
printf("%d\n",Ans);
return 0;
}

[BSOJ2684]锯木厂选址(斜率优化)的更多相关文章

  1. [CEOI2004]锯木厂选址 斜率优化DP

    斜率优化DP 先考虑朴素DP方程, f[i][k]代表第k个厂建在i棵树那里的最小代价,最后答案为f[n+1][3]; f[i][k]=min(f[j][k-1] + 把j+1~i的树都运到i的代价) ...

  2. 【BZOJ2684】【CEOI2004】锯木厂选址(斜率优化,动态规划)

    [BZOJ2684][CEOI2004]锯木厂选址(斜率优化,动态规划) 题面 万恶的BZOJ因为权限题的原因而做不了... 我要良心的提供题面 Description 从山顶上到山底下沿着一条直线种 ...

  3. luoguP4360 [CEOI2004]锯木厂选址

    题目链接 luoguP4360 [CEOI2004]锯木厂选址 题解 dis:后缀和 sum:前缀和 补集转化,减去少走的,得到转移方程 dp[i] = min(tot - sumj * disj - ...

  4. P4360 [CEOI2004]锯木厂选址

    P4360 [CEOI2004]锯木厂选址 这™连dp都不是 \(f_i\)表示第二个锯木厂设在\(i\)的最小代价 枚举1号锯木厂 \(f_i=min_{0<=j<i}(\sum_{i= ...

  5. luogu4360 锯木厂选址 (斜率优化dp)

    设: sw[i]为1..i的w之和 sd[i]为1到i的距离 cost[i]为把第一个锯木厂建在i带来的花费 all[i,j]为把i..j所有木头运到j所需要的花费 所以$all[i,j]=cost[ ...

  6. 2018.08.28 洛谷P4360 [CEOI2004]锯木厂选址(斜率优化dp)

    传送门 一道斜率优化dp入门题. 是这样的没错... 我们用dis[i]表示i到第三个锯木厂的距离,sum[i]表示前i棵树的总重量,w[i]为第i棵树的重量,于是发现如果令第一个锯木厂地址为i,第二 ...

  7. 洛谷P4360 [CEOI2004]锯木厂选址(斜率优化)

    传送门 我可能根本就没有学过斜率优化…… 我们设$dis[i]$表示第$i$棵树到山脚的距离,$sum[i]$表示$w$的前缀和,$tot$表示所有树运到山脚所需要的花费,$dp[i]$表示将第二个锯 ...

  8. 动态规划(斜率优化):[CEOI2004]锯木厂选址

    锯木场选址(CEOI2004) 从山顶上到山底下沿着一条直线种植了n棵老树.当地的政府决定把他们砍下来.为了不浪费任何一棵木材,树被砍倒后要运送到锯木厂. 木材只能按照一个方向运输:朝山下运.山脚下有 ...

  9. 【CEOI2004】锯木厂选址

    [题目描述] 从山顶上到山底下沿着一条直线种植了n棵老树.当地的政府决定把他们砍下来.为了不浪费任何一棵木材,树被砍倒后要运送到锯木厂.木材只能按照一个方向运输:朝山下运.山脚下有一个锯木厂.另外两个 ...

随机推荐

  1. JVM虚拟机 - Class类文件结构

    概述 Class文件是一组以8位字节为基础单位的二进制流,各个数据项目严格按照顺序紧凑地排列在Class文件之中,中间没有添加任何分隔符,这使得整个Class文件中存储的内容几乎都是程序运行的必要数据 ...

  2. JQuery notepad

    ready:在文档加载后执行,在文档对象加载完毕后,页面完全显示后执行,把所有事件函数放在ready中加载是一种非常好的方法,ready() 函数不应与 <body onload="& ...

  3. jsp连接sqlite、Sqlite相对路径绝对路径问题(转)

    转自  http://blog.csdn.net/sxy12138/article/details/52304884 假如在java中, # 数据库连接jdbc.jdbc-url=jdbc:sqlit ...

  4. linux服务器安装nodejs运行环境

    安装nodejs运行环境 第一步:到node官网下载相应版本的安装包,将安装包放置服务器上,路径为 usr/local/node(可根据自身情况进行修改) 第二步:解压 ***.tar.xz格式文件需 ...

  5. while循环,break和continue,运算符,格式化输出

    一丶while循环 while条件: 代码块(循环体) #数数 打印1-100 count = 1 while count <= 100: print(count) count += 1 执行顺 ...

  6. JVM(一):Java内存区域与内存溢出异常

    一.运行时数据区 共分为5块: 程序计数器      (线程私有,当前线程所执行的字节码的行号指示器) Java虚拟机栈  (线程私有,证明周期与线程相同,描述的是Java方法执行的内存模型,每个方法 ...

  7. Javascript Functions

    Javascript 全局对象 全局属性和函数可用于所有内建的Javascript对象 顶层函数(全局函数) decodeURI()解码某个编码的URI. decodeURIComponent()解码 ...

  8. android通过fiddler代理,抓取网络请求

    安装fiddler过程省略 1, 2, 3, 4,手机需要跟电脑处于同一局域网,设置网络代理为电脑在局域网内的ip,端口为3步设置的port 5,电脑就可以通过fiddler监控手机的所有网络请求了( ...

  9. openstack RuntimeError: Unable to create a new session key. It is likely that the cache

    [Mon Apr 15 01:02:31.654247 2019] [:error] [pid 19433:tid 139790082479872] Login successful for user ...

  10. cesium 加载TMS影像(已经切片)

    TMS影像数据格式 加载影像的代码: var layers = viewer.scene.imageryLayers; var blackMarble = layers.addImageryProvi ...