【NOI2015】【程序自己主动分析】【并查集+离散化】
Description
在实现程序自己主动分析的过程中,经常须要判定一些约束条件能否被同一时候满足。
Input
输入文件的第1行包括1个正整数t,表示须要判定的问题个数。注意这些问题之间是相互独立的。
若e=1,则该约束条件为xi=xj。若e=0,则该约束条件为xi≠xj。
Output
输出文件包含t行。
Sample Input
2
1 2 1
1 2 0
2
1 2 1
2 1 1
Sample Output
YES
HINT
在第一个问题中,约束条件为:x1=x2,x1≠x2。这两个约束条件互相矛盾,因此不可被同一时候满足。
这两个约束条件是等价的,能够被同一时候满足。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
struct use{
int v1,v2,p1,p2,kind;
}a[1000001];
bool ff;
int fa[1000001],t,n,x,y,k,tt,c[1000001],tot;
int find(int x)
{
if (x!=fa[x]) fa[x]=find(fa[x]);
return fa[x];
}
int main()
{
freopen("prog.in","r",stdin);
freopen("prog.out","w",stdout);
scanf("%d",&t);
while (t--)
{
memset(c,0,sizeof(c));
scanf("%d",&n);tt=0;ff=true;
for (int i=1;i<=2*n;i++) fa[i]=i;
for (int i=1;i<=n;i++)
{
scanf("%d%d%d",&x,&y,&k);
c[++tt]=x;c[++tt]=y;
a[i].v1=x;a[i].v2=y;a[i].kind=k;
}
sort(c+1,c+tt+1);
tot=unique(c+1,c+tt+1)-c-1;
for (int i=1;i<=n;i++)
{
int r1,r2;
a[i].p1=upper_bound(c+1,c+tot+1,a[i].v1)-c-1;
a[i].p2=upper_bound(c+1,c+tot+1,a[i].v2)-c-1;
r1=find(a[i].p1);r2=find(a[i].p2);
if (a[i].kind==1)
{
r1=find(a[i].p1);r2=find(a[i].p2);
if (r1!=r2) fa[r1]=r2;
}
}
for (int i=1;i<=n;i++)
{
int r1,r2;
if (a[i].kind==0)
{
r1=find(a[i].p1);r2=find(a[i].p2);
if (r1==r2){ff=false;break;}
}
}
if (ff) printf("YES\n");
else printf("NO\n");
}
}
【NOI2015】【程序自己主动分析】【并查集+离散化】的更多相关文章
- BZOJ 4195: [Noi2015]程序自动分析 并查集+离散化
LUOGU 1955BZOJ 4195 题目描述 在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足. 考虑一个约束满足问题的简化版本:假设x1,x2,x3...代表程序中出现的变量 ...
- BZOJ 4195: [Noi2015]程序自动分析 [并查集 离散化 | 种类并查集WA]
题意: 给出若干相等和不等关系,判断是否可行 woc NOI考这么傻逼的题飞快打了一个种类并查集交上了然后爆零... 发现相等和不等看错了异或一下再叫woc90分 然后发现md$a \neq b, a ...
- NOI2015 洛谷P1955 程序自动分析(并查集+离散化)
这可能是我目前做过的最简单的一道noi题目了...... 先对e=1的处理,用并查集:再对e=0查询,如果这两个在同一集合中,则为""NO",最后都满足的话输出" ...
- BZOJ-4195 NOI2015Day1T1 程序自动分析 并查集+离散化
总的来说,这道题水的有点莫名奇妙,不过还好一次轻松A 4195: [Noi2015]程序自动分析 Time Limit: 10 Sec Memory Limit: 512 MB Submit: 836 ...
- [UOJ#131][BZOJ4199][NOI2015]品酒大会 后缀数组 + 并查集
[UOJ#131][BZOJ4199][NOI2015]品酒大会 试题描述 一年一度的“幻影阁夏日品酒大会”隆重开幕了.大会包含品尝和趣味挑战两个环节,分别向优胜者颁发“首席品酒家”和“首席猎手”两个 ...
- 【并查集+离散化】BZOJ4195- [Noi2015]程序自动分析
[题目大意] 在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足. 考虑一个约束满足问题的简化版本:假设x1,x2,x3,…代表程序中出现的变量,给定n个形如xi=xj或xi≠xj的 ...
- 【BZOJ4199】[Noi2015]品酒大会 后缀数组+并查集
[BZOJ4199][Noi2015]品酒大会 题面:http://www.lydsy.com/JudgeOnline/wttl/thread.php?tid=2144 题解:听说能用SAM?SA默默 ...
- [NOI2015] 品酒大会 - 后缀数组,并查集,STL,启发式合并
[NOI2015] 品酒大会 Description 对于每一个 \(i \in [0,n)\) 求有多少对后缀满足 LCP 长度 \(\le i\) ,并求满足条件的两个后缀权值乘积的最大值. So ...
- BZOJ 4199: [Noi2015]品酒大会( 后缀数组 + 并查集 )
求出后缀数组后, 对height排序, 从大到小来处理(r相似必定是0~r-1相似), 并查集维护. 复杂度O(NlogN + Nalpha(N)) ------------------------- ...
随机推荐
- 《Linux命令行与shell脚本编程大全 第3版》Linux命令行---14
以下为阅读<Linux命令行与shell脚本编程大全 第3版>的读书笔记,为了方便记录,特地与书的内容保持同步,特意做成一节一次随笔,特记录如下:
- html5手机返回按钮跳转到指定页面问题
最近在做活动的时候有一个这样的场景,在主页面点击跳出一个弹层表单,填写完信息后,点击确认跳转到指定的展示页面了.这时候在手机端点击浏览器自带的返回按钮后,回到主页面,这时候主页面无法刷新,弹层信息还在 ...
- Codeforces Gym101522 D.Distribution of Days-算日期 (La Salle-Pui Ching Programming Challenge 培正喇沙編程挑戰賽 2017)
D.Distribution of Days The Gregorian calendar is internationally the most widely used civil calendar ...
- Codeforces 371E Subway Innovation (前缀和预处理应用)
题目链接 Subway Innovation 首先不难想到所求的k个点一定是连续的,那么假设先选最前面的k个点,然后在O(1)内判断第2个点到第k+1个点这k个点哪个更优. 判断的时候用detla[i ...
- ActiveMQ 权限(二)
在 ActiveMQ 权限(一) 配置了对消息队列的权限,以下设置完成消息的权限,比如只接受某ip的消息. 两步完成, 第一步:继承接口org.apache.activemq.security.Mes ...
- Java IO设计模式
JAVA IO 设计模式彻底分析 2011-01-06 14:20:09| 分类: java|字号 订阅 http://blog.csdn.net/tianyue168/archive/2010/0 ...
- 实现一个Java五子棋
五子棋手把手教你写: 写在前面的话: 回想起从前初学代码的五子棋简直写的不像样子.今天闲来无事就写了个五子棋的小程序. 一来呢回忆一下很久以前写代码时的感觉. 二来呢顺便帮下诸位有需求的学生,顺利的C ...
- 解决 java.sql.SQLException: Before start of result set
java中使用如下代码做数据库连接,用以查询数据 *******************我是分割线************************************* try { Class.f ...
- python+tesseract验证码识别的一点小心得
由于公司需要,最近开始学习验证码的识别 我选用的是tesseract-ocr进行识别,据说以前是惠普公司开发的排名前三的,现在开源了.到目前为止已经出到3.0.2了 当然了,前期我们还是需要对验证码进 ...
- Activity入门(一)
生命周期 onCreate():activity进行创建,在该方法中应调用setContentView(),findViewById()以及获取要展示的数据的方法(如调用manager ...