C. Mike and gcd problem
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Mike has a sequence A = [a1, a2, ..., an] of length n. He considers the sequence B = [b1, b2, ..., bn] beautiful if the gcd of all its elements is bigger than 1, i.e. .

Mike wants to change his sequence in order to make it beautiful. In one move he can choose an index i (1 ≤ i < n), delete numbers ai, ai + 1 and put numbers ai - ai + 1, ai + ai + 1 in their place instead, in this order. He wants perform as few operations as possible. Find the minimal number of operations to make sequence A beautiful if it's possible, or tell him that it is impossible to do so.

 is the biggest non-negative number d such that d divides bi for every i (1 ≤ i ≤ n).

Input

The first line contains a single integer n (2 ≤ n ≤ 100 000) — length of sequence A.

The second line contains n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 109) — elements of sequence A.

Output

Output on the first line "YES" (without quotes) if it is possible to make sequence A beautiful by performing operations described above, and "NO" (without quotes) otherwise.

If the answer was "YES", output the minimal number of moves needed to make sequence A beautiful.

Examples
input
2
1 1
output
YES
1
input
3
6 2 4
output
YES
0
input
2
1 3
output
YES
1
Note

In the first example you can simply make one move to obtain sequence [0, 2] with .

In the second example the gcd of the sequence is already greater than 1.

题意:

对于给定字符串,我们可将其相邻的两个字符做以下操作:

num[i],num[i+1]  ->  num[i]-num[i+1],num[i]+num[i+1]

由此可得,变换两次得:-2num[i+1],2num[i]

因为所有数均可转换为偶数,所以结果不可能为“NO”。

当相邻两数均为奇数时,只进行一次变换就可将它们全部变换为偶数;

当相邻数一奇一偶时,只要进行两次就可转换为偶数。

AC代码:

 #include<bits/stdc++.h>
using namespace std; long long num[];
int n; int gcd(long long a,long long b){
if(b==){
return abs(a);
}
return gcd(b,a%b);
} int main(){
cin>>n;
for(int i=;i<n;i++){
cin>>num[i];
}
long long ans=;
for(int i=;i<n;i++){
ans=gcd(ans,num[i]);
}
if(ans>){
cout<<"YES"<<endl<<<<endl;
return ;
}
ans=;
for(int i=;i<n-;i++){
if(num[i]&&&num[i+]&){
ans++;
num[i]=;
num[i+]=;
}
}
for(int i=;i<n;i++){
if(num[i]&){
ans+=;
}
}
cout<<"YES"<<endl<<ans<<endl; return ;
}

CF-798C的更多相关文章

  1. ORA-00494: enqueue [CF] held for too long (more than 900 seconds) by 'inst 1, osid 5166'

    凌晨收到同事电话,反馈应用程序访问Oracle数据库时报错,当时现场现象确认: 1. 应用程序访问不了数据库,使用SQL Developer测试发现访问不了数据库.报ORA-12570 TNS:pac ...

  2. cf之路,1,Codeforces Round #345 (Div. 2)

     cf之路,1,Codeforces Round #345 (Div. 2) ps:昨天第一次参加cf比赛,比赛之前为了熟悉下cf比赛题目的难度.所以做了round#345连试试水的深浅.....   ...

  3. cf Round 613

    A.Peter and Snow Blower(计算几何) 给定一个点和一个多边形,求出这个多边形绕这个点旋转一圈后形成的面积.保证这个点不在多边形内. 画个图能明白 这个图形是一个圆环,那么就是这个 ...

  4. ARC下OC对象和CF对象之间的桥接(bridge)

    在开发iOS应用程序时我们有时会用到Core Foundation对象简称CF,例如Core Graphics.Core Text,并且我们可能需要将CF对象和OC对象进行互相转化,我们知道,ARC环 ...

  5. [Recommendation System] 推荐系统之协同过滤(CF)算法详解和实现

    1 集体智慧和协同过滤 1.1 什么是集体智慧(社会计算)? 集体智慧 (Collective Intelligence) 并不是 Web2.0 时代特有的,只是在 Web2.0 时代,大家在 Web ...

  6. CF memsql Start[c]UP 2.0 A

    CF memsql Start[c]UP 2.0 A A. Golden System time limit per test 1 second memory limit per test 256 m ...

  7. CF memsql Start[c]UP 2.0 B

    CF memsql Start[c]UP 2.0 B B. Distributed Join time limit per test 1 second memory limit per test 25 ...

  8. CF #376 (Div. 2) C. dfs

    1.CF #376 (Div. 2)    C. Socks       dfs 2.题意:给袜子上色,使n天左右脚袜子都同样颜色. 3.总结:一开始用链表存图,一直TLE test 6 (1)如果需 ...

  9. CF #375 (Div. 2) D. bfs

    1.CF #375 (Div. 2)  D. Lakes in Berland 2.总结:麻烦的bfs,但其实很水.. 3.题意:n*m的陆地与水泽,水泽在边界表示连通海洋.最后要剩k个湖,总要填掉多 ...

  10. CF #374 (Div. 2) D. 贪心,优先队列或set

    1.CF #374 (Div. 2)   D. Maxim and Array 2.总结:按绝对值最小贪心下去即可 3.题意:对n个数进行+x或-x的k次操作,要使操作之后的n个数乘积最小. (1)优 ...

随机推荐

  1. WPF 基础到企业应用系列1——开篇故意

    參考资料 提到參考资料,大家第一感觉就是MSDN,当然我也不例外.这个站点基本上是学习微软技术的首选站点,除了这个站点以外,我还參考了非常多其它的社区和站点,基本上都在.NET 技术社区之我见(英文篇 ...

  2. ORACLE 11G 单实例 磁盘文件系统 DG 归档日志删除脚本 基于RED HAT LINUX 5.3 X86 64BIT

    近期做个DG的归档日志删除, [oracle@.local logs]crontab -l * 8 * * * sh /home/oracle/dbscripts/del_arc.sh 该脚本分别调用 ...

  3. Windows 7 &amp; Ubuntu 14.04完美双系统安装及系统引导配置----校园网Mentohust配置

    本文写于完美安装双系统之后,所以图片会不全然.主要目的是总结下注意事项.备用. 一.Win7-64-旗舰版U盘安装 win7-64-旗舰版纯净版下载,下载安装后仅仅有1个驱动人生! 附刻盘工具激活工具 ...

  4. angular 指令封装弹出框效果

    就直接用bs的警告框啦~,Duang~ 功能 可以设置message和type,type就是bs内置的几种颜色 默认提示3秒框自动关闭,或者点击x号关闭 代码 模板 <div class=&qu ...

  5. centos 在CentOS下编译FFmpeg

    所需软件 准备 yum install autoconf automake gcc gcc-c++ git libtool make nasm pkgconfig zlib-devel  -y 新版还 ...

  6. 基于chyh1990/caffe-compact在windows vs2013上编译caffe步骤

    1.      从https://github.com/chyh1990/caffe-compact下载caffe-compact代码: 2.      通过CMake(cmake-gui)生成vs2 ...

  7. mysql中索引的使用

    索引是加速查询的主要手段,特别对于涉及多个表的查询更是如此.本节中,将介绍索引的作用.特点,以及创建和删除索引的语法. 使用索引优化查询 索引是快速定位数据的技术,首先通过一个示例来了解其含义及作用. ...

  8. mongodb 安装、启动

    MongoDB 之 你得知道MongoDB是个什么鬼 MongoDB - 1   最近有太多的同学向我提起MongoDB,想要学习MongoDB,还不知道MongoDB到底是什么鬼,或者说,知道是数据 ...

  9. 九度OJ 1132:与7无关的数 (数字特性)

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:1619 解决:1037 题目描述: 一个正整数,如果它能被7整除,或者它的十进制表示法中某个位数上的数字为7, 则称其为与7相关的数.现求所 ...

  10. 在Qt中使用大漠插件

    因工作需要,项目需求(要编写一个营销软件,其中一个功能是控制QQ和微信发送广告消息给指定的联系人或群组, 因为我Windows和逆向水平还不到家,起初的调用Windows API的设计方案不可行,于是 ...