Machine Learning No.4: Regularization
1. Underfit = High bias
Overfit = High varience
2. Addressing overfitting:
(1) reduce number of features.
Manually select which features to keep.
Model selection algorithm
disadvantage: throw out some useful information
(2) Regularization
Keep all the features, but reduce magnitude/values of parameters θj
works well when we have a lot of features, each of which contributλes a bit to predicting y.
3. Regularization
if λ is extremely large, , then J(θ) will be underfitting
4. Gradient desent
Repeat {
(j = 1, 2 ... n)
}
5. Normal equation
if λ > 0
if m <= n
is non-invertible/singular
but using regularization will avoid this problem
Machine Learning No.4: Regularization的更多相关文章
- [笔记]机器学习(Machine Learning) - 03.正则化(Regularization)
欠拟合(Underfitting)与过拟合(Overfitting) 上面两张图分别是回归问题和分类问题的欠拟合和过度拟合的例子.可以看到,如果使用直线(两组图的第一张)来拟合训,并不能很好地适应我们 ...
- Machine Learning - 第3周(Logistic Regression、Regularization)
Logistic regression is a method for classifying data into discrete outcomes. For example, we might u ...
- (原创)Stanford Machine Learning (by Andrew NG) --- (week 3) Logistic Regression & Regularization
coursera上面Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 我曾经使用Logistic Regressio ...
- Regularization method for machine learning
Regularization method(正则化方法) Outline Overview of Regularization L0 regularization L1 regularization ...
- Andrew Ng Machine Learning 专题【Logistic Regression & Regularization】
此文是斯坦福大学,机器学习界 superstar - Andrew Ng 所开设的 Coursera 课程:Machine Learning 的课程笔记. 力求简洁,仅代表本人观点,不足之处希望大家探 ...
- machine learning(14) --Regularization:Regularized linear regression
machine learning(13) --Regularization:Regularized linear regression Gradient descent without regular ...
- Kernel Functions for Machine Learning Applications
In recent years, Kernel methods have received major attention, particularly due to the increased pop ...
- Machine Learning Algorithms Study Notes(3)--Learning Theory
Machine Learning Algorithms Study Notes 高雪松 @雪松Cedro Microsoft MVP 本系列文章是Andrew Ng 在斯坦福的机器学习课程 CS 22 ...
- Machine Learning Algorithms Study Notes(2)--Supervised Learning
Machine Learning Algorithms Study Notes 高雪松 @雪松Cedro Microsoft MVP 本系列文章是Andrew Ng 在斯坦福的机器学习课程 CS 22 ...
随机推荐
- 利用mvn/maven如何检查依赖冲突,并解决依赖冲突
mvn/maven如何检查依赖冲突,并解决依赖冲突 如图,点击图示位置,就可以把整个项目的依赖关系展示出来 在图里选中一个artifact,则所有依赖该artifact的地方都会一起连带出来突出显示, ...
- mysql数据库查看各实例磁盘占用情况
1.总体查看: use information_schema; select TABLE_SCHEMA, concat(truncate(sum(data_length)/1024/1024,2),' ...
- UNP学习笔记(第一章 简介)
环境搭建 1.下载解压unpv13e.tar.gz 2.进入目录执行 ./configurecd lib //进入lib目录make //执行make命令 3.将生成的libunp.a静态库复制到/u ...
- SQL检索语句及过滤语句
首先推荐一款比较好用的数据库管理软件:navicat premium. 数据库中最重要的检索功能:SELECT语句 1.检索单个列:select 列名 from 表名: 2.检索多个列:select ...
- C语言批量数据到动态二维数组
上一篇文章将文件读取放到静态创建的二维数组中,可是结合网络上感觉到今天的DT时代,这样批量大量读取一个上百行的数据,分配的内存是否可能由于大量的数据而产生溢出呢,近期一直研究里malloc函数.通过它 ...
- [ACM] POJ 1068 Parencodings(模拟)
Parencodings Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 19352 Accepted: 11675 De ...
- Synchronized修饰静态变量和普通变量的区别
这里主要涉及到类对象(static方法),对象方法(非static方法) 我们知道,当synchronized修饰一个static方法时,多线程下,获取的是类锁(即Class本身,注意:不是实例): ...
- andorid中发送短信页面以及邮件发送
跳转到发送短信页面 Uri smsToUri = Uri.parse("smsto://10086"); Intent mIntent = new Intent( android. ...
- ios开发之猜数字游戏
// // main.m // 猜数 // #import <Foundation/Foundation.h> #import "Guess.h" int main(i ...
- 【问】Windows下C++局部变量在内存中的分布问题
原本是为了看看C++对象模型中子对象赋值给一个父对象和父类型指针指向的域时,到底会不会切割,就打开codebloks写了下面的代码,编译器选的是GNU. #define DEBUG(X) std::c ...