Machine Learning No.4: Regularization
1. Underfit = High bias
Overfit = High varience
2. Addressing overfitting:
(1) reduce number of features.
Manually select which features to keep.
Model selection algorithm
disadvantage: throw out some useful information
(2) Regularization
Keep all the features, but reduce magnitude/values of parameters θj
works well when we have a lot of features, each of which contributλes a bit to predicting y.
3. Regularization
if λ is extremely large, , then J(θ) will be underfitting
4. Gradient desent
Repeat {
(j = 1, 2 ... n)
}
5. Normal equation
if λ > 0
if m <= n
is non-invertible/singular
but using regularization will avoid this problem
Machine Learning No.4: Regularization的更多相关文章
- [笔记]机器学习(Machine Learning) - 03.正则化(Regularization)
欠拟合(Underfitting)与过拟合(Overfitting) 上面两张图分别是回归问题和分类问题的欠拟合和过度拟合的例子.可以看到,如果使用直线(两组图的第一张)来拟合训,并不能很好地适应我们 ...
- Machine Learning - 第3周(Logistic Regression、Regularization)
Logistic regression is a method for classifying data into discrete outcomes. For example, we might u ...
- (原创)Stanford Machine Learning (by Andrew NG) --- (week 3) Logistic Regression & Regularization
coursera上面Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 我曾经使用Logistic Regressio ...
- Regularization method for machine learning
Regularization method(正则化方法) Outline Overview of Regularization L0 regularization L1 regularization ...
- Andrew Ng Machine Learning 专题【Logistic Regression & Regularization】
此文是斯坦福大学,机器学习界 superstar - Andrew Ng 所开设的 Coursera 课程:Machine Learning 的课程笔记. 力求简洁,仅代表本人观点,不足之处希望大家探 ...
- machine learning(14) --Regularization:Regularized linear regression
machine learning(13) --Regularization:Regularized linear regression Gradient descent without regular ...
- Kernel Functions for Machine Learning Applications
In recent years, Kernel methods have received major attention, particularly due to the increased pop ...
- Machine Learning Algorithms Study Notes(3)--Learning Theory
Machine Learning Algorithms Study Notes 高雪松 @雪松Cedro Microsoft MVP 本系列文章是Andrew Ng 在斯坦福的机器学习课程 CS 22 ...
- Machine Learning Algorithms Study Notes(2)--Supervised Learning
Machine Learning Algorithms Study Notes 高雪松 @雪松Cedro Microsoft MVP 本系列文章是Andrew Ng 在斯坦福的机器学习课程 CS 22 ...
随机推荐
- NetBeans菜单栏字体太小了
NetBeans菜单栏字体太小了,导致很难看 解决方法:在netbeans的快捷方式内加入"netbeans.exe" --fontsize 12参数.还可以通过配置NetBean ...
- DIY树莓派之随身工具箱
摆弄树莓派有一年多了,在这里把经验分享给大家,少走弯路. 先放图两张. 搭建目的: wifi信号中转站\网站服务器\IC卡渗透测试\中间人\otr… 基于树莓派3 系统为Kali Linux 2017 ...
- 2017.2.12 开涛shiro教程-第八章-拦截器机制
原博客地址:http://jinnianshilongnian.iteye.com/blog/2018398 根据下载的pdf学习. 1.拦截器介绍 下图是shiro拦截器的基础类图: 1.Namea ...
- C++课程资源下载问题
[来信] 贺老师,您好,我是江西某高校软件学院的一名在校学生.看了您在csdn上公布的博文和视频,我获益良多.不得不承认,之前的大学时光我是荒废了,立即就要大三了,我主攻的是C++方面.因此我悔过自新 ...
- AutoCAD如何输入文字
1 运行文字命令(这里使用单行文字),然后鼠标点击文字的起始点,如图所示 2 鼠标分别向上和向右移动一定距离,表示文字的高度(文字的大小)和文字的旋转角度(一般向右,因为是水平文字) 3 最后 ...
- HDOJ 2829 Lawrence
四边形不等式优化DP Lawrence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Othe ...
- 阿里巴巴天猫超市团队招聘java开发工程师
大家好,发个招聘信息:我是阿里巴巴集天猫超市开发团队的同学,我们部门目前在杭州招人,P6岗位,要求至少本科,熟悉java,spring等java开发技术,最好有互联网企业开发经验,感兴趣的可以通过我直 ...
- 实用国际(XX)计量单位表
很多实用附录简表:http://www.zdic.net/appendix/f1.htm 计量单位简表 时间的单位换算 : 1秒=1000毫秒(ms) 1毫秒=1/1,000秒(s) 1秒=1,00 ...
- VueJS表单控件操作
概念说明 v-model指令:在表单控件元素上创建双向数据绑定.v-model 会根据控件类型自动选取正确的方法来更新元素. 输入框 实例中演示了 input 和 textarea 元素中使用 v-m ...
- 单点登录系统cas资料汇总
http://jasig.github.io/cas/4.0.x/index.html 主页 https://jasigcas.herokuapp.com ...