1. Underfit = High bias

  Overfit = High varience

2. Addressing overfitting:

  (1) reduce number of features.

    Manually select which features to keep.

    Model selection algorithm

disadvantage: throw out some useful information

(2) Regularization

    Keep all the features, but reduce magnitude/values of parameters θj

    works well when we have a lot of features, each of which contributλes a bit to predicting y.

3. Regularization

if λ is extremely large, , then J(θ) will be underfitting

4. Gradient desent

Repeat {

  

         (j = 1, 2 ... n)

}

5. Normal equation

if λ > 0

if m <= n

is non-invertible/singular

but using regularization will avoid this problem

Machine Learning No.4: Regularization的更多相关文章

  1. [笔记]机器学习(Machine Learning) - 03.正则化(Regularization)

    欠拟合(Underfitting)与过拟合(Overfitting) 上面两张图分别是回归问题和分类问题的欠拟合和过度拟合的例子.可以看到,如果使用直线(两组图的第一张)来拟合训,并不能很好地适应我们 ...

  2. Machine Learning - 第3周(Logistic Regression、Regularization)

    Logistic regression is a method for classifying data into discrete outcomes. For example, we might u ...

  3. (原创)Stanford Machine Learning (by Andrew NG) --- (week 3) Logistic Regression & Regularization

    coursera上面Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 我曾经使用Logistic Regressio ...

  4. Regularization method for machine learning

    Regularization method(正则化方法) Outline Overview of Regularization L0 regularization L1 regularization ...

  5. Andrew Ng Machine Learning 专题【Logistic Regression &amp; Regularization】

    此文是斯坦福大学,机器学习界 superstar - Andrew Ng 所开设的 Coursera 课程:Machine Learning 的课程笔记. 力求简洁,仅代表本人观点,不足之处希望大家探 ...

  6. machine learning(14) --Regularization:Regularized linear regression

    machine learning(13) --Regularization:Regularized linear regression Gradient descent without regular ...

  7. Kernel Functions for Machine Learning Applications

    In recent years, Kernel methods have received major attention, particularly due to the increased pop ...

  8. Machine Learning Algorithms Study Notes(3)--Learning Theory

    Machine Learning Algorithms Study Notes 高雪松 @雪松Cedro Microsoft MVP 本系列文章是Andrew Ng 在斯坦福的机器学习课程 CS 22 ...

  9. Machine Learning Algorithms Study Notes(2)--Supervised Learning

    Machine Learning Algorithms Study Notes 高雪松 @雪松Cedro Microsoft MVP 本系列文章是Andrew Ng 在斯坦福的机器学习课程 CS 22 ...

随机推荐

  1. 利用mvn/maven如何检查依赖冲突,并解决依赖冲突

    mvn/maven如何检查依赖冲突,并解决依赖冲突 如图,点击图示位置,就可以把整个项目的依赖关系展示出来 在图里选中一个artifact,则所有依赖该artifact的地方都会一起连带出来突出显示, ...

  2. mysql数据库查看各实例磁盘占用情况

    1.总体查看: use information_schema; select TABLE_SCHEMA, concat(truncate(sum(data_length)/1024/1024,2),' ...

  3. UNP学习笔记(第一章 简介)

    环境搭建 1.下载解压unpv13e.tar.gz 2.进入目录执行 ./configurecd lib //进入lib目录make //执行make命令 3.将生成的libunp.a静态库复制到/u ...

  4. SQL检索语句及过滤语句

    首先推荐一款比较好用的数据库管理软件:navicat premium. 数据库中最重要的检索功能:SELECT语句 1.检索单个列:select 列名 from 表名: 2.检索多个列:select ...

  5. C语言批量数据到动态二维数组

    上一篇文章将文件读取放到静态创建的二维数组中,可是结合网络上感觉到今天的DT时代,这样批量大量读取一个上百行的数据,分配的内存是否可能由于大量的数据而产生溢出呢,近期一直研究里malloc函数.通过它 ...

  6. [ACM] POJ 1068 Parencodings(模拟)

    Parencodings Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 19352   Accepted: 11675 De ...

  7. Synchronized修饰静态变量和普通变量的区别

    这里主要涉及到类对象(static方法),对象方法(非static方法) 我们知道,当synchronized修饰一个static方法时,多线程下,获取的是类锁(即Class本身,注意:不是实例): ...

  8. andorid中发送短信页面以及邮件发送

    跳转到发送短信页面 Uri smsToUri = Uri.parse("smsto://10086"); Intent mIntent = new Intent( android. ...

  9. ios开发之猜数字游戏

    // // main.m // 猜数 // #import <Foundation/Foundation.h> #import "Guess.h" int main(i ...

  10. 【问】Windows下C++局部变量在内存中的分布问题

    原本是为了看看C++对象模型中子对象赋值给一个父对象和父类型指针指向的域时,到底会不会切割,就打开codebloks写了下面的代码,编译器选的是GNU. #define DEBUG(X) std::c ...