题目描述

Y901高速公路是一条重要的交通纽带,政府部门建设初期的投入以及使用期间的养护费用都不低,因此政府在这条高速公路上设立了许多收费站。
Y901高速公路是一条由N-1段路以及N个收费站组成的东西向的链,我们按照由西向东的顺序将收费站依次编号为1~N,从收费站i行驶到i+1(或从i+1行驶到i)需要收取Vi的费用。高速路刚建成时所有的路段都是免费的。
政府部门根据实际情况,会不定期地对连续路段的收费标准进行调整,根据政策涨价或降价。
无聊的小A同学总喜欢研究一些稀奇古怪的问题,他开车在这条高速路上行驶时想到了这样一个问题:对于给定的l,r(l<r),在第l个到第r个收费站里等概率随机取出两个不同的收费站a和b,那么从a行驶到b将期望花费多少费用呢?

输入

第一行2个正整数N,M,表示有N个收费站,M次调整或询问
接下来M行,每行将出现以下两种形式中的一种
C l r v 表示将第l个收费站到第r个收费站之间的所有道路的通行费全部增加v
Q l r   表示对于给定的l,r,要求回答小A的问题
所有C与Q操作中保证1<=l<r<=N

输出

对于每次询问操作回答一行,输出一个既约分数
若答案为整数a,输出a/1

样例输入

4 5
C 1 4 2
C 1 2 -1
Q 1 2
Q 2 4
Q 1 4

样例输出

1/1
8/3
17/6


题解

线段树

首先将每次修改和询问的r减1,把线段权值转化为点权值。

然后使用总和/总次数的方式计算期望。

考虑第$i$个点$(l\le i\le r)$,它被选中的次数为$(i-l+1)*(r-i+1)$,所以所求即为

于是直接开3棵线段树维护$v[i]*i*i$、$v[i]*i$、$v[i]$的区间和即可。

注意要开long long。

#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 100010
#define lson l , mid , x << 1
#define rson mid + 1 , r , x << 1 | 1
using namespace std;
typedef long long ll;
struct data
{
ll sum[N << 2] , si[N << 2] , add[N << 2];
void pushdown(int x)
{
if(add[x])
{
sum[x << 1] += add[x] * si[x << 1] , add[x << 1] += add[x];
sum[x << 1 | 1] += add[x] * si[x << 1 | 1] , add[x << 1 | 1] += add[x];
add[x] = 0;
}
}
void build(int flag , int l , int r , int x)
{
if(l == r)
{
if(flag == 0) si[x] = 1;
else if(flag == 1) si[x] = l;
else si[x] = (ll)l * l;
return;
}
int mid = (l + r) >> 1;
build(flag , lson) , build(flag , rson);
si[x] = si[x << 1] + si[x << 1 | 1];
}
void update(int b , int e , ll a , int l , int r , int x)
{
if(b <= l && r <= e)
{
sum[x] += a * si[x] , add[x] += a;
return;
}
pushdown(x);
int mid = (l + r) >> 1;
if(b <= mid) update(b , e , a , lson);
if(e > mid) update(b , e , a , rson);
sum[x] = sum[x << 1] + sum[x << 1 | 1];
}
ll query(int b , int e , int l , int r , int x)
{
if(b <= l && r <= e) return sum[x];
pushdown(x);
int mid = (l + r) >> 1;
ll ans = 0;
if(b <= mid) ans += query(b , e , lson);
if(e > mid) ans += query(b , e , rson);
return ans;
}
}A , B , C;
char str[5];
ll gcd(ll a , ll b)
{
return b ? gcd(b , a % b) : a;
}
int main()
{
int n , m , x , y;
ll z , t , d;
scanf("%d%d" , &n , &m) , n -- ;
A.build(0 , 1 , n , 1) , B.build(1 , 1 , n , 1) , C.build(2 , 1 , n , 1);
while(m -- )
{
scanf("%s%d%d" , str , &x , &y) , y -- ;
if(str[0] == 'C')
scanf("%lld" , &z) , A.update(x , y , z , 1 , n , 1) , B.update(x , y , z , 1 , n , 1) , C.update(x , y , z , 1 , n , 1);
else
{
t = (y - x + 1 - (ll)y * x) * A.query(x , y , 1 , n , 1) + (y + x) * B.query(x , y , 1 , n , 1) - C.query(x , y , 1 , n , 1);
d = gcd(t , (ll)(y - x + 1) * (y - x + 2) / 2);
printf("%lld/%lld\n" , t / d , (ll)(y - x + 1) * (y - x + 2) / 2 / d);
}
}
return 0;
}

【bzoj2752】[HAOI2012]高速公路(road) 线段树的更多相关文章

  1. BZOJ2752: [HAOI2012]高速公路(road)(线段树 期望)

    Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 1820  Solved: 736[Submit][Status][Discuss] Descripti ...

  2. BZOJ 2752: [HAOI2012]高速公路(road)( 线段树 )

    对于询问[L, R], 我们直接考虑每个p(L≤p≤R)的贡献,可以得到 然后化简一下得到 这样就可以很方便地用线段树, 维护一个p, p*vp, p*(p+1)*vp就可以了 ----------- ...

  3. BZOJ 2752: [HAOI2012]高速公路(road) [线段树 期望]

    2752: [HAOI2012]高速公路(road) Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 1219  Solved: 446[Submit] ...

  4. 2019.01.14 bzoj2752: [HAOI2012]高速公路(线段树)

    传送门 线段树菜题. 题意简述:给一条nnn个点的链,链有边权,支持区间修改边权,查询在一段区间内随机选择不同的起点和终点路径的期望总边权和. 思路:考虑每条边的贡献. 考虑对于一段区间[l,r][l ...

  5. 【线段树】BZOJ2752: [HAOI2012]高速公路(road)

    2752: [HAOI2012]高速公路(road) Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 1621  Solved: 627[Submit] ...

  6. BZOJ2752: [HAOI2012]高速公路(road)

    2752: [HAOI2012]高速公路(road) Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 608  Solved: 199[Submit][ ...

  7. P2221 [HAOI2012]高速公路(线段树)

    P2221 [HAOI2012]高速公路 显然答案为 $\dfrac{\sum_{i=l}^r\sum_{j=l}^{r}dis[i][j]}{C_{r-l+1}^2}$ 下面倒是挺好算,组合数瞎搞 ...

  8. 洛谷P2221 [HAOI2012]高速公路(线段树+概率期望)

    传送门 首先,答案等于$$ans=\sum_{i=l}^r\sum_{j=i}^r\frac{sum(i,j)}{C_{r-l+1}^2}$$ 也就是说所有情况的和除以总的情况数 因为这是一条链,我们 ...

  9. [luoguP2221] [HAOI2012]高速公路(线段树)

    传送门 考虑每一段对答案的贡献 用每一段的左端点来表示当前这一段,那么区间就变成了[1,n-1] 如果询问区间[l,r],其中一个点的位置为x,则它对答案的贡献为(x-l)*(r-x)*s[x](s[ ...

随机推荐

  1. UVALive 4794 Sharing Chocolate(状压,枚举子集)

    n的规模可以状压,f[x][y][S]表示x行,y列,S集合的巧克力能否被切割. 预处理出每个状态S对应的面积和sum(S),对于一个合法的状态一定满足x*y=sum(S),实际上只有两个变量是独立的 ...

  2. CF Gym 100637F The Pool for Lucky Ones

    题意:给你一串非负整数,可以将一个非零数减1,加到相邻的数字上,要使其中所有最大数字的和最小. 题解:模拟可以过.也可以分析,可以要减少最大数字和,如果最大数字出现大于等于3次,可以把最大数字加一,或 ...

  3. Problem T: 结构体--学生信息排序

    Problem T: 结构体--学生信息排序 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 2219  Solved: 1305[Submit][Sta ...

  4. Java中的Static修饰符

    static(静态.修饰符):static修饰成员变量时:static修饰成员变量时,那么该成员变量的数据就是一个共享的数据. 静态成员变量的访问方式:方式一: 使用对象进行访问. 对象.属性名 方式 ...

  5. Bootstrap历练实例:向列表组添加内容

    向列表组添加自定义内容 我们可以向上面已添加链接的列表组添加任意的 HTML 内容.下面的实例演示了这点: <!DOCTYPE html><html><head>& ...

  6. iOS 导航栏遮挡问题 --- iOS开发系列 ---项目中成长的知识七

    不知大家有没有遇见过自己写的tableview被导航栏遮挡住的问题,反正我是遇见过! 因为在ios7以后所有的UIViewController创建后默认就是full Screen的,因此如果带导航栏的 ...

  7. xmpp 协议详解

    XMPP(可扩展消息处理现场协议)是基于可扩展标记语言(XML)的协议,它用于即时消息(IM)以及在线现场探测.它在促进服务器之间的准即时操作.这个协议可能最终允许因特网用户向因特网上的其他任何人发送 ...

  8. kali下安装中文输入法

    参考网址:https://blog.csdn.net/qq_37367124/article/details/79229739 更性源 vim /etc/apt/source.list 设置更新源 更 ...

  9. 分享几个简单的技巧让你的 vue.js 代码更优雅

    1. watch 与 computed 的巧妙结合 一个简单的列表页面. 你可能会这么做: created(){ this.fetchData() }, watch: { keyword(){ thi ...

  10. 【markdown】图片的处理

    1st: ![tip](link) 2ed: ![tip][id] [id]:base64string 本地图片 先把本地图片文件转换成base64位编码 然后把 link 替换成生成的base64编 ...