做法太神了,理解不了。

自己想到的是建出AC自动机然后建出矩阵然后求逆计算,感觉可以过$40%$

用一个状态$N$表示任意一个位置没有匹配成功的概率和。

每种匹配不成功的情况都是等价的。

然后我们强制在后面加上长度为m的01串,那么这个串的概率是一定的。

然后考虑加上的这些字符还能拼成什么串,因为状态$N$的末尾是不确定的。

如果另外一个串的后缀等于这个串的前缀的话,是可能带来影响的。

所以计算出影响的概率,然后高斯消元即可。

然而有一个问题,N的概率最后消出来代表什么意思啊,是指期望的长度吗?

希望各位dalao不吝赐教。

#include <map>
#include <cmath>
#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define F(i,j,k) for (int i=j;i<=k;++i)
#define D(i,j,k) for (int i=j;i>=k;--i)
#define ll long long
#define mp make_pair int n,m,s[305][305],str[605],fail[605];
char ss[305];
double a[305][305],pw[305],ans[305]; void kmp()
{
// F(i,1,2*m) printf("%d ",str[i]); printf("\n");
str[0]=-1;
memset(fail,0,sizeof fail);
for (int i=2,j=0;i<=2*m;++i)
{
while (j&&str[i]!=str[j+1]) j=fail[j];
if (str[j+1]==str[i]) j++;
fail[i]=j;
}
// F(i,1,2*m) printf("%d ",fail[i]);printf("\n");
} void solve(int x)
{
a[x][x]=1;F(i,1,m) str[i]=s[x][i];
F(y,1,n)// if (y!=x)
{
F(i,1,m) str[i+m]=s[y][i]; kmp();
int now=fail[2*m];
// printf("now is %d\n",now);
while (now>=m) now=fail[now];
while (now)
{
// printf("Can %d\n",now);
a[x][y]+=pw[m-now];
now=fail[now];
}
}
a[x][n+1]=-pw[m]; a[x][n+2]=0;
} void Gauss()
{
F(i,1,n+1)
{
int tmp=i;
F(j,i+1,n+1) if (fabs(a[j][i])>fabs(a[i][i])) tmp=j;
if (tmp!=i) F(j,1,n+2) swap(a[i][j],a[tmp][j]);
F(j,1,n+1) if (j!=i)
{
double t=a[j][i]/a[i][i];
F(k,1,n+2) a[j][k]-=t*a[i][k];
}
// F(i,1,n+1){F(j,1,n+2)printf("%.3f ",a[i][j]);printf("\n");}
}
F(i,1,n+1) ans[i]=a[i][n+2]/a[i][i];
F(i,1,n) printf("%.10lf\n",ans[i]);
} int main()
{
// freopen("in.txt","r",stdin);
scanf("%d%d",&n,&m);
pw[0]=1;F(i,1,m)pw[i]=pw[i-1]*0.5;
F(i,1,n){scanf("%s",ss+1);F(j,1,m) s[i][j]=(ss[j]=='H');}
F(i,1,n) solve(i);
F(i,1,n) a[n+1][i]=1; a[n+1][n+2]=1;
// F(i,1,n+1){F(j,1,n+2)printf("%.3f ",a[i][j]);printf("\n");}
Gauss();
}

  

BZOJ 4820 [Sdoi2017]硬币游戏 ——期望DP 高斯消元的更多相关文章

  1. bzoj 4820: [Sdoi2017]硬币游戏【kmp+高斯消元】

    有点神,按照1444的做法肯定会挂 注意到它的概率是相同的,所以可以简化状态 详见http://www.cnblogs.com/candy99/p/6701221.html https://www.c ...

  2. bzoj 3143 [Hnoi2013]游走 期望dp+高斯消元

    [Hnoi2013]游走 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3394  Solved: 1493[Submit][Status][Disc ...

  3. [BZOJ 4820] [SDOI2017] 硬币游戏(高斯消元+概率论+字符串hash)

    [BZOJ 4820] [SDOI2017] 硬币游戏(高斯消元+概率论+字符串hash) 题面 扔很多次硬币后,用H表示正面朝上,用T表示反面朝上,会得到一个硬币序列.比如HTT表示第一次正面朝上, ...

  4. BZOJ_3143_[Hnoi2013]游走_期望DP+高斯消元

    BZOJ_3143_[Hnoi2013]游走_期望DP+高斯消元 题意: 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机 ...

  5. BZOJ:4820: [Sdoi2017]硬币游戏&&BZOJ:1444: [Jsoi2009]有趣的游戏(高斯消元求概率)

    1444: [Jsoi2009]有趣的游戏 4820: [Sdoi2017]硬币游戏 这两道题都是关于不断随机生成字符后求出现给定字符串的概率的问题. 第一题数据范围较小,将串建成AC自动机以后,以A ...

  6. BZOJ.4820.[SDOI2017]硬币游戏(思路 高斯消元 哈希/AC自动机/KMP)

    BZOJ 洛谷 建出AC自动机,每个点向两个儿子连边,可以得到一张有向图.参照 [SDOI2012]走迷宫 可以得到一个\(Tarjan\)+高斯消元的\(O((nm)^3)\)的做法.(理论有\(6 ...

  7. BZOJ 3270 && BZOJ 1778 (期望DP && 高斯消元)

    BZOJ 3270 :设置状态为Id(x,y)表示一人在x,一人在y这个状态的概率. 所以总共有n^2种状态. p[i]表示留在该点的概率,Out[i]=(1-p[i])/Degree[i]表示离开该 ...

  8. BZOJ.2707.[SDOI2012]走迷宫(期望 Tarjan 高斯消元)

    题目链接 一个点到达终点的期望步数 \(E_i=\sum_{(i,j)\in G}\frac{E_j+1}{out[i]}\),\(out[i]\)为点\(i\)的出度. 那么对于一个DAG可以直接在 ...

  9. HDU 2262 Where is the canteen 期望dp+高斯消元

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=2262 Where is the canteen Time Limit: 10000/5000 MS ...

随机推荐

  1. jquery绑定事件的系统参数传递方法

    如果是传递的事件自带函数,,可使用以下语法(以鼠标移动事件为例): init: function () { $(document).on("mousemove",loginOper ...

  2. SpringMVC-常用的注解

    1. RequestParam注解 把请求中的指定名称的参数传递给控制器中的形参赋值 value:请求参数中的名称 require:请求参数中是否必须提供此参数,默认值是true,必须提供 2. Re ...

  3. Memcached笔记之分布式算法

    1.根据余数进行分散:离散度高,但是增加或者移除服务器的时候,缓存充足的代价非常大.添加服务器后,余数就会产生巨变,这样就无法获取与保存时相同的服务器,从而音像缓存的命中率. 2.Consistent ...

  4. rcnn,sppnet,fast rcnn,ohem,faster rcnn,rfcn

    https://zhuanlan.zhihu.com/p/21412911 rcnn需要固定图片的大小,fast rcnn不需要 rcnn,sppnet,fast rcnn,ohem,faster r ...

  5. Django 模板函数

    Django 模板函数 在模板中的函数是只需要函数名,不用加括号,自动执行 在前端中的函数 不用加括号,函数自动执行 前端 {% for item in userinfo.keys %} <h3 ...

  6. SizeClass介绍

    随着iOS8系统的发布,一个全新的页面UI布局概念出现,这个新特性将颠覆包括iOS7及之前版本的UI布局方式,这个新特性就是Size Class.Size Class配合Auto Layout可以解决 ...

  7. VC下的C语言程序随机数的产生

    本文章适用于VC编译器,VC编译器里有个rand()函数,我们用它来实现取随机数. #include <stdio.h> #include<stdlib.h> //随机数的头文 ...

  8. 分割catalina.out 每天生成一个文件

    1. touch xxx(文件名字).sh 2.     vim xxx.sh 写入  ----------------------- #!/bin/sh cd `dirname $0`pwdd=`d ...

  9. verilog 1995 VS 2001 part1模块声明的扩展

    1.模块声明的扩展 (1)端口声明(input/output/inout)同数据类型声明(reg /wire)放在同一语句中. (2)ANSI C风格的端口声明可以用于module/task/func ...

  10. 下载旧版本的JDK

    下载旧版本的JDK 有的时候我们需要去下载旧版本的JDK,但是进入Oracle官网,显示的总是新版的JDK,这里告诉大家怎么样去下载旧版本的JDK. 首先去JavaSE的 下载界面 拉到最下面,找到这 ...