Caffe源码解析5:Conv_Layer
转载请注明出处,楼燚(yì)航的blog,http://home.cnblogs.com/louyihang-loves-baiyan/
Vision_layer里面主要是包括了一些关于一些视觉上的操作,比如卷积、反卷积、池化等等。这里的类跟data layer一样好很多种继承关系。主要包括了这几个类,其中CuDNN分别是CUDA版本,这里先不讨论,在这里先讨论ConvolutionLayer
- BaseConvolutionLayer
- ConvolutionLaye
- DeconvolutionLayer
- CuDNNConvolutionLayer
- Im2colLayer
- LRNLayer
- CuDNNLRNLayer
- CuDNNLCNLayer
- PoolingLayer
- CuDNNPoolingLayer
- SPPLayer
这里我画了一个类图,将关系梳理了一下:

BaseConvolutionLayer
其继承自Layer,是一个卷积以及反卷积操作的基类,首先我们来看BaseConvolutionLayer的LayerSetUp函数
void BaseConvolutionLayer<Dtype>::LayerSetUp(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top)
//首先这里主要是在配置卷积kernel 的size,padding,stride以及inputs
ConvolutionParameter conv_param = this->layer_param_.convolution_param();
force_nd_im2col_ = conv_param.force_nd_im2col();
channel_axis_ = bottom[0]->CanonicalAxisIndex(conv_param.axis());
const int first_spatial_axis = channel_axis_ + 1;
const int num_axes = bottom[0]->num_axes();
num_spatial_axes_ = num_axes - first_spatial_axis;
CHECK_GE(num_spatial_axes_, 0);
vector<int> bottom_dim_blob_shape(1, num_spatial_axes_ + 1);
vector<int> spatial_dim_blob_shape(1, std::max(num_spatial_axes_, 1));
// 设置kernel的dimensions
kernel_shape_.Reshape(spatial_dim_blob_shape);
int* kernel_shape_data = kernel_shape_.mutable_cpu_data();
接着是设置相应的stride dimensions,对于2D,设置在h和w方向上的stride,代码太长列出简要的
pad_.Reshape(spatial_dim_blob_shape);
int* pad_data = pad_.mutable_cpu_data();
pad_data[0] = conv_param.pad_h();
pad_data[1] = conv_param.pad_w();
......一堆if else判断
对于kernel的pad也做相应设置
pad_.Reshape(spatial_dim_blob_shape);
int* pad_data = pad_.mutable_cpu_data();
pad_data[0] = conv_param.pad_h();
pad_data[1] = conv_param.pad_w();
接下来是对widhts 和bias左设置和填充,其中blob[0]里面存放的是filter weights,而blob[1]里面存放的是biases,当然biases是可选的,也可以没有
//设置相应的shape,并检查
vector<int> weight_shape(2);
weight_shape[0] = conv_out_channels_;
weight_shape[1] = conv_in_channels_ / group_;
bias_term_ = this->layer_param_.convolution_param().bias_term();
vector<int> bias_shape(bias_term_, num_output_);
//填充权重
this->blobs_[0].reset(new Blob<Dtype>(weight_shape));
shared_ptr<Filler<Dtype> > weight_filler(GetFiller<Dtype>(
this->layer_param_.convolution_param().weight_filler()));
weight_filler->Fill(this->blobs_[0].get());
//填充偏置项
if (bias_term_) {
this->blobs_[1].reset(new Blob<Dtype>(bias_shape));
shared_ptr<Filler<Dtype> > bias_filler(GetFiller<Dtype>(
this->layer_param_.convolution_param().bias_filler()));
bias_filler->Fill(this->blobs_[1].get());
}
ConvolutionLayer
ConvolutionLayer继承了BaseConvolutionLayer,主要作用就是将一副image做卷积操作,使用学到的filter的参数和biaes。同时在Caffe里面,卷积操作做了优化,变成了一个矩阵相乘的操作。其中有两个比较主要的函数是im2col以及col2im。
图中上半部分是一个传统卷积,下图是一个矩阵相乘的版本

下图是在一个卷积层中将卷积操作展开的具体操作过程,他里面按照卷积核的大小取数据然后展开,在同一张图里的不同卷积核选取的逐行摆放,不同N的话,就在同一行后面继续拼接,不同个可以是多个通道,但是需要注意的是同一行里面每一段都应该对应的是原图中中一个位置的卷积窗口。

对于卷积层中的卷积操作,还有一个group的概念要说明一下,groups是代表filter 组的个数。引入gruop主要是为了选择性的连接卷基层的输入端和输出端的channels,否则参数会太多。每一个group 和1/ group的input 通道和 1/group 的output通道进行卷积操作。比如有4个input, 8个output,那么1-4属于第一组,5-8属于第二个gruop
ConvolutionLayer里面,主要重写了Forward_cpu和Backward_cpu
void ConvolutionLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {
const Dtype* weight = this->blobs_[0]->cpu_data();
for (int i = 0; i < bottom.size(); ++i) {
const Dtype* bottom_data = bottom[i]->cpu_data();
Dtype* top_data = top[i]->mutable_cpu_data();
for (int n = 0; n < this->num_; ++n) {
this->forward_cpu_gemm(bottom_data + n * this->bottom_dim_, weight,
top_data + n * this->top_dim_);
if (this->bias_term_) {
const Dtype* bias = this->blobs_[1]->cpu_data();
this->forward_cpu_bias(top_data + n * this->top_dim_, bias);
}
}
}
}
可以看到其实这里面他调用了forward_cpu_gemm,而这个函数内部又调用了math_function里面的caffe_cpu_gemm的通用矩阵相乘接口,GEMM的全称是General Matrix Matrix Multiply。其基本形式如下:
\]
template <typename Dtype>
void ConvolutionLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) {
//反向传播梯度误差
const Dtype* weight = this->blobs_[0]->cpu_data();
Dtype* weight_diff = this->blobs_[0]->mutable_cpu_diff();
for (int i = 0; i < top.size(); ++i) {
const Dtype* top_diff = top[i]->cpu_diff();
const Dtype* bottom_data = bottom[i]->cpu_data();
Dtype* bottom_diff = bottom[i]->mutable_cpu_diff();
//如果有bias项,计算Bias导数
if (this->bias_term_ && this->param_propagate_down_[1]) {
Dtype* bias_diff = this->blobs_[1]->mutable_cpu_diff();
for (int n = 0; n < this->num_; ++n) {
this->backward_cpu_bias(bias_diff, top_diff + n * this->top_dim_);
}
}
//计算weight
if (this->param_propagate_down_[0] || propagate_down[i]) {
for (int n = 0; n < this->num_; ++n) {
// 计算weights权重的梯度
if (this->param_propagate_down_[0]) {
this->weight_cpu_gemm(bottom_data + n * this->bottom_dim_,
top_diff + n * this->top_dim_, weight_diff);
}
//计算botttom数据的梯度,下后传递
if (propagate_down[i]) {
this->backward_cpu_gemm(top_diff + n * this->top_dim_, weight,
bottom_diff + n * this->bottom_dim_);
}
}
}
}
}
Caffe源码解析5:Conv_Layer的更多相关文章
- Caffe源码解析7:Pooling_Layer
转载请注明出处,楼燚(yì)航的blog,http://home.cnblogs.com/louyihang-loves-baiyan/ Pooling 层一般在网络中是跟在Conv卷积层之后,做采样 ...
- Caffe源码解析6:Neuron_Layer
转载请注明出处,楼燚(yì)航的blog,http://home.cnblogs.com/louyihang-loves-baiyan/ NeuronLayer,顾名思义这里就是神经元,激活函数的相应 ...
- Caffe源码解析4: Data_layer
转载请注明出处,楼燚(yì)航的blog,http://home.cnblogs.com/louyihang-loves-baiyan/ data_layer应该是网络的最底层,主要是将数据送给blo ...
- Caffe源码解析3:Layer
转载请注明出处,楼燚(yì)航的blog,http://home.cnblogs.com/louyihang-loves-baiyan/ layer这个类可以说是里面最终的一个基本类了,深度网络呢就是 ...
- Caffe源码解析2:SycedMem
转载请注明出处,楼燚(yì)航的blog,http://www.cnblogs.com/louyihang loves baiyan/ 看到SyncedMem就知道,这是在做内存同步的操作.这类个类的 ...
- Caffe源码解析1:Blob
转载请注明出处,楼燚(yì)航的blog,http://www.cnblogs.com/louyihang-loves-baiyan/ 首先看到的是Blob这个类,Blob是作为Caffe中数据流通的 ...
- caffe源码解析
http://blog.csdn.net/lanxuecc/article/details/53186613
- caffe源码阅读
参考网址:https://www.cnblogs.com/louyihang-loves-baiyan/p/5149628.html 1.caffe代码层次熟悉blob,layer,net,solve ...
- 【Caffe】源码解析----caffe.proto (转载)
分析caffe源码,看首先看caffe.proto,是明智的选择.好吧,我不是创造者,只是搬运工. 原文地址:http://blog.csdn.net/qq_16055159/article/deta ...
随机推荐
- [WCF编程]10.操作:请求/应答操作
一.调用操作概述 WCF除了支持经典的服务端-客户端的请求/应答操作外,还提供了对其他操作类型的内建支持,包括:即发即弃的单向调用:允许服务将调用返回给客户端的双向回调:允许客户端或服务器处理大量负荷 ...
- 分布式系统设计权衡之CAP
写在最前: 1.为什么学习并记录分布式设计理念一系列相关的东西 在日常工作中系统设计评审的时候,经常会有一些同事抛出一些概念,高可用性,一致性等等字眼,他们用这些最基本的概念去反驳系统最初的设计,但是 ...
- JAVAWEB贵美网上商城完整项目源码(SSH2)
JAVAWEB贵美网上商城完整项目源码(SSH2) 贵美网上商城原是北大青鸟的一个内部项目,项目采用 struts2+spring4+hibernate4+MySQL等技术实现,数据库连接池采用c3p ...
- eclipse中怎么添加Hibernate tools
最近在学习Hibernate框架,但是用eclipse的时候发现自己安装的过程不是很顺利,因此记下来,供自己和别人参考. Hibernate Tools是由JBoss推出的一个Eclipse集成开发工 ...
- PHP使用mysqli扩展库实现增删改查(面向对象版)
mysqli扩展库是mysql扩展库的改进版本,在mysql扩展库的基础上提高了稳定性和效率,mysqli扩展库有两套东西,一套就是面向过程的mysqli另一套是面向对象的mysqli.操作方式大体和 ...
- java多线程-读写锁
Java5 在 java.util.concurrent 包中已经包含了读写锁.尽管如此,我们还是应该了解其实现背后的原理. 读/写锁的 Java 实现(Read / Write Lock Java ...
- An entity object cannot be referenced by multiple instances of IEntityChangeTracker 的解决方案
使用EF对建立了关系的表新增记录时出现: An entity object cannot be referenced by multiple instances of IEntityChangeTra ...
- 取消IE提示下载安全提问
需求:在企业访问内部WEB系统下载文件时,IE总会弹出安全提问,征得用户同意后弹出下载保存框.现用户需要点击下载后,直接弹出下载保存框. 方案:这涉及IE安全定义问题,进行相关设置即可.方法如下:
- 推荐一个内容滚动jquery插件
myslider是一个内容滚动jquery插件,版本0.1.2的每次滚动内容是一行内容,可以是文字,可以是一个链接,还可以是图片. 官方网址:http://keleyi.com/jq/myslider ...
- 在VM虚拟机上安装Microsoft Dynamics CRM 2016 步骤图解及安装注意事项
安装Dynamics CRM 2016环境配置要求: 系统版本:Windows Server 2012 R2(必须) SQL 版本: SQLServer2014SP1-FullSlipstream-x ...