题目

On another floor of the A.R.C. Markland-N, the young man Simon "Xenon" Jackson, takes a break after finishing his project early (as always). Having a lot of free time, he decides to put on his legendary hacker "X" instinct and fight against the gangs of the cyber world.

His target is a network of \(n\) small gangs. This network contains exactly \(n−1\) direct links, each of them connecting two gangs together. The links are placed in such a way that every pair of gangs is connected through a sequence of direct links.

By mining data, Xenon figured out that the gangs used a form of cross-encryption to avoid being busted: every link was assigned an integer from \(0\) to \(n−2\) such that all assigned integers are distinct and every integer was assigned to some link. If an intruder tries to access the encrypted data, they will have to surpass \(S\) password layers, with \(S\) being defined by the following formula:

\[s=\sum_{1\le u \le v \le n} mex(u,v)
\]

Here, \(mex(u,v)\) denotes the smallest non-negative integer that does not appear on any link on the unique simple path from gang \(u\) to gang \(v\).

Xenon doesn't know the way the integers are assigned, but it's not a problem. He decides to let his AI's instances try all the passwords on his behalf, but before that, he needs to know the maximum possible value of \(S\), so that the AIs can be deployed efficiently.

Now, Xenon is out to write the AI scripts, and he is expected to finish them in two hours. Can you find the maximum possible \(S\) before he returns?

输入格式

The first line contains an integer \(n (2 \le n \le 3000)\), the number of gangs in the network.

Each of the next n−1 lines contains integers \(u_i\) and \(v_i (1 \le u_i,v_i \le n; u_i \ne v_i)\), indicating there's a direct link between gangs \(u_i\) and \(v_i\).

It's guaranteed that links are placed in such a way that each pair of gangs will be connected by exactly one simple path.

输出格式

print the maximum possible value of \(S\) — the number of password layers in the gangs' network.

样例输入1

3
1 2
2 3

样例输出1

3

样例输入1

5
1 2
1 3
1 4
3 5

样例输出1

10

注意

In the first example, one can achieve the maximum \(S\) with the following assignment:

With this assignment, \(mex(1,2)=0\), \(mex(1,3)=24\) and \(mex(2,3)=1\). Therefore, \(S=0+2+1=3\).

In the second example, one can achieve the maximum \(S\) with the following assignment:

With this assignment, all non-zero mex value are listed below:

  • \(mex(1,3)=1\)
  • \(mex(1,5)=2\)
  • \(mex(2,3)=1\)
  • \(mex(2,5)=2\)
  • \(mex(3,4)=1\)
  • \(mex(4,5)=3\)

Therefore, \(S=1+2+1+2+1+3=10\).

题解

看一下样例2

首先考虑边权为\(0\)的这条边,只要通过这条边的,最小的整数就是\(1\)了,那么经过这条边路径的个数就是\(0\)贡献的代价,即这条边右边的点数量乘左边点数量:\(2 \times 3 = 6\)

再考虑\(1\),如果单独考虑它,经过它的最小整数是\(0\),对答案没有一点贡献了,所以必须和1组合起来,那么把\(0-1\)看做一个整体,右边一个点,左边3个点,所以贡献就是\(1 \times 3 = 3\)

注意这里的贡献是1的原因是之前已经有一层1的贡献,这里是2的贡献,所以每条链只多了1的贡献

对于\(2\),必须和\(0,1\)组合起来,而且只能考虑\(2-0-1\)这一条链,所以左边1个点,右边1个点,贡献就是\(1 \times 1 = 1\)

对于\(3\),无法构成一条链,贡献就是\(0\)

所以加起来就是\(10\),和样例输出一样

注意从小到大所有权值必须在一条链上,如果不够成一条链,比如\(3\),最小整数就是\(0\),相当于没有贡献了

简化模型,只考虑一条链

设\(dp_{i,j}\)为从\(i\)到\(j\)的\(S\)最大值

然后把左边的点数后右边点数的积加上中间的链的dp值,中间的dp值就可以用递归实现.

注意这里的递归可以使用记忆化搜索.

#include <cstdio>
#include <cstring>
#define max(a, b) ((a) > (b) ? (a) : (b))
const int maxn = 3005;
long long dp[maxn][maxn], cnt[maxn][maxn], ans;
int fa[maxn][maxn], head[maxn << 1], next[maxn << 1], to[maxn << 1], n, x, y, ct;
void dfs(int x, int f, int root) {
cnt[root][x] = 1;
fa[root][x] = f;
for (int i = head[x]; i; i = next[i]) {
if (to[i] == f) continue;
dfs(to[i], x, root);
cnt[root][x] += cnt[root][to[i]];
}
}
long long dpf(int x, int y) {
if (x == y) return 0;
if (dp[x][y] != -1) return dp[x][y];
return dp[x][y] = cnt[y][x] * cnt[x][y] + max(dpf(fa[y][x], y), dpf(x, fa[x][y]));
}
int main() {
scanf("%d", &n);
for (int i = 1; i < n; i++) {
scanf("%d%d", &x, &y);
to[++ct] = --y, next[ct] = head[--x], head[x] = ct;
to[++ct] = x, next[ct] = head[y], head[y] = ct;
}
for (int i = 0; i < n; i++) dfs(i, -1, i);
memset(dp, -1, sizeof(dp));
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++) ans = max(ans, dpf(i, j));
printf("%lld", ans);
}

Codeforces 1292C Xenon's Attack on the Gangs 题解的更多相关文章

  1. CF1292C Xenon's Attack on the Gangs 题解

    传送门 题目描述 输入格式 输出格式 题意翻译 给n个结点,n-1条无向边.即一棵树.我们需要给这n-1条边赋上0~ n-2不重复的值.mex(u,v)表示从结点u到结点v经过的边权值中没有出现的最小 ...

  2. CF1292C Xenon's Attack on the Gangs

    题目链接:https://codeforces.com/problemset/problem/1292/C 题意 在一颗有n个节点的树上,给每个边赋值,所有的值都在\([0,n-2]\)内并且不重复, ...

  3. Xenon's Attack on the Gangs(树规)

    题干 Input Output Example Test 1: Test 2: 3 5 1 2 1 2 2 3 1 3 1 4 3 5 3 10 Tips 译成人话 给n个结点,n-1条无向边.即一棵 ...

  4. Xenon's Attack on the Gangs,题解

    题目: 题意: 有一个n个节点的树,边权为0-n-2,定义mex(a,b)表示除了ab路径上的自然数以外的最小的自然数,求如何分配边权使得所有的mex(a,b)之和最大. 分析: 看似有点乱,我们先不 ...

  5. 【树形DP】CF 1293E Xenon's Attack on the Gangs

    题目大意 vjudge链接 给n个结点,n-1条无向边.即一棵树. 我们需要给这n-1条边赋上0~ n-2不重复的值. mex(u,v)表示从结点u到结点v经过的边权值中没有出现的最小非负整数. 计算 ...

  6. Codeforces Round #609 (Div. 2)前五题题解

    Codeforces Round #609 (Div. 2)前五题题解 补题补题…… C题写挂了好几个次,最后一题看了好久题解才懂……我太迟钝了…… 然后因为longlong调了半个小时…… A.Eq ...

  7. Educational Codeforces Round 48 (Rated for Div. 2) CD题解

    Educational Codeforces Round 48 (Rated for Div. 2) C. Vasya And The Mushrooms 题目链接:https://codeforce ...

  8. Codeforces Round #542 [Alex Lopashev Thanks-Round] (Div. 2) 题解

    Codeforces Round #542 [Alex Lopashev Thanks-Round] (Div. 2) 题目链接:https://codeforces.com/contest/1130 ...

  9. Educational Codeforces Round 59 (Rated for Div. 2) DE题解

    Educational Codeforces Round 59 (Rated for Div. 2) D. Compression 题目链接:https://codeforces.com/contes ...

随机推荐

  1. Linux 最大有效权限与删除ACL

    最大有效权限mask mask是用来指定最大有效权限的.如果给用户赋予了acl权限,则需要与mask权限”相与“才能得到用户的真正权限 setfacl -m m:rx 文件名,指定最大有效权限.例如: ...

  2. 关于vue不能像angular深度克隆数据解决办法

    vue要让数据源实现响应式前提必须要在初始化的时候有这个属性 如果没有这个属性,也可实现数据实时响应.解决方法: this.数组/对象.spice(0,1,'属性值') Vue.set(要修改的数组或 ...

  3. 如何向这些CA来申请数字证书呢?

    申请的过程大致是: 1.自己本地先生成一对密匙,然后拿着自己的公匙以及其他信息(比如说企业名称啊什么的)去CA申请数字证书. 2.CA在拿到这些信息后,会选择一种单向Hash算法(比如说常见的MD5) ...

  4. Sublime 配置 Markdown,并实时预览

    准备: 找到菜单栏:Preferences → Package Control → Package Control:Install Package 需要安装的插件: [Markdown Editing ...

  5. PAI-AutoLearning 图像分类使用教程

    概述 PAI AutoLearning(简称PAI AL)自动学习支持在线标注.自动模型训练.超参优化以及模型评估.在平台上只需准备少量标注数据,设置训练时长即可得到深度优化的模型.同时自动学习PAI ...

  6. IDEA Gradle项目控制台输出乱码

    idea 更新到2019.2.3没有这个选项. 可以点击 help->edit custom vm options 然后加上 -Dfile.encoding=utf-8 重启一下就好了

  7. IP组网实验(使用Cisco Packet Tracer路由器模拟软件)

    最近计网课讲到了以太网,第二个计网实验就是IP组网实验.这个实验主要使用了netsim这个路由器模拟软件.怎奈mac上没有,于是用Cisco Packet Tracer进行了一次模拟(其实就是实验中的 ...

  8. STM32单片机应用与全案例实践 /stm32自学笔记 第二版 pdf

    STM32单片机应用与全案例实践pdf https://pan.baidu.com/s/16WrivuLcHvLTwS__Zcwl6Q 4rj3 stm32自学笔记 第二版 pdf https://p ...

  9. Python爬虫实战,完整的思路和步骤(附源码)

    前言 小的时候心中总有十万个为什么类似的问题,今天带大家爬取一个问答类的网站. 本堂课使用正则表达式对文本类的数据进行提取,正则表达式是数据提取的通用方法. 环境介绍: python 3.6 pych ...

  10. 必知必会的8个Python列表技巧

    原作者:Nik Piepenbreier 翻译&内容补充:费弗里 原文地址:https://towardsdatascience.com/advanced-python-list-techni ...