Codeforces 1292C Xenon's Attack on the Gangs 题解
题目
On another floor of the A.R.C. Markland-N, the young man Simon "Xenon" Jackson, takes a break after finishing his project early (as always). Having a lot of free time, he decides to put on his legendary hacker "X" instinct and fight against the gangs of the cyber world.
His target is a network of \(n\) small gangs. This network contains exactly \(n−1\) direct links, each of them connecting two gangs together. The links are placed in such a way that every pair of gangs is connected through a sequence of direct links.
By mining data, Xenon figured out that the gangs used a form of cross-encryption to avoid being busted: every link was assigned an integer from \(0\) to \(n−2\) such that all assigned integers are distinct and every integer was assigned to some link. If an intruder tries to access the encrypted data, they will have to surpass \(S\) password layers, with \(S\) being defined by the following formula:
\]
Here, \(mex(u,v)\) denotes the smallest non-negative integer that does not appear on any link on the unique simple path from gang \(u\) to gang \(v\).
Xenon doesn't know the way the integers are assigned, but it's not a problem. He decides to let his AI's instances try all the passwords on his behalf, but before that, he needs to know the maximum possible value of \(S\), so that the AIs can be deployed efficiently.
Now, Xenon is out to write the AI scripts, and he is expected to finish them in two hours. Can you find the maximum possible \(S\) before he returns?
输入格式
The first line contains an integer \(n (2 \le n \le 3000)\), the number of gangs in the network.
Each of the next n−1 lines contains integers \(u_i\) and \(v_i (1 \le u_i,v_i \le n; u_i \ne v_i)\), indicating there's a direct link between gangs \(u_i\) and \(v_i\).
It's guaranteed that links are placed in such a way that each pair of gangs will be connected by exactly one simple path.
输出格式
print the maximum possible value of \(S\) — the number of password layers in the gangs' network.
样例输入1
3
1 2
2 3
样例输出1
3
样例输入1
5
1 2
1 3
1 4
3 5
样例输出1
10
注意
In the first example, one can achieve the maximum \(S\) with the following assignment:

With this assignment, \(mex(1,2)=0\), \(mex(1,3)=24\) and \(mex(2,3)=1\). Therefore, \(S=0+2+1=3\).
In the second example, one can achieve the maximum \(S\) with the following assignment:

With this assignment, all non-zero mex value are listed below:
- \(mex(1,3)=1\)
- \(mex(1,5)=2\)
- \(mex(2,3)=1\)
- \(mex(2,5)=2\)
- \(mex(3,4)=1\)
- \(mex(4,5)=3\)
Therefore, \(S=1+2+1+2+1+3=10\).
题解

看一下样例2
首先考虑边权为\(0\)的这条边,只要通过这条边的,最小的整数就是\(1\)了,那么经过这条边路径的个数就是\(0\)贡献的代价,即这条边右边的点数量乘左边点数量:\(2 \times 3 = 6\)
再考虑\(1\),如果单独考虑它,经过它的最小整数是\(0\),对答案没有一点贡献了,所以必须和1组合起来,那么把\(0-1\)看做一个整体,右边一个点,左边3个点,所以贡献就是\(1 \times 3 = 3\)
注意这里的贡献是1的原因是之前已经有一层1的贡献,这里是2的贡献,所以每条链只多了1的贡献
对于\(2\),必须和\(0,1\)组合起来,而且只能考虑\(2-0-1\)这一条链,所以左边1个点,右边1个点,贡献就是\(1 \times 1 = 1\)
对于\(3\),无法构成一条链,贡献就是\(0\)
所以加起来就是\(10\),和样例输出一样
注意从小到大所有权值必须在一条链上,如果不够成一条链,比如\(3\),最小整数就是\(0\),相当于没有贡献了
简化模型,只考虑一条链

设\(dp_{i,j}\)为从\(i\)到\(j\)的\(S\)最大值
然后把左边的点数后右边点数的积加上中间的链的dp值,中间的dp值就可以用递归实现.
注意这里的递归可以使用记忆化搜索.
#include <cstdio>
#include <cstring>
#define max(a, b) ((a) > (b) ? (a) : (b))
const int maxn = 3005;
long long dp[maxn][maxn], cnt[maxn][maxn], ans;
int fa[maxn][maxn], head[maxn << 1], next[maxn << 1], to[maxn << 1], n, x, y, ct;
void dfs(int x, int f, int root) {
cnt[root][x] = 1;
fa[root][x] = f;
for (int i = head[x]; i; i = next[i]) {
if (to[i] == f) continue;
dfs(to[i], x, root);
cnt[root][x] += cnt[root][to[i]];
}
}
long long dpf(int x, int y) {
if (x == y) return 0;
if (dp[x][y] != -1) return dp[x][y];
return dp[x][y] = cnt[y][x] * cnt[x][y] + max(dpf(fa[y][x], y), dpf(x, fa[x][y]));
}
int main() {
scanf("%d", &n);
for (int i = 1; i < n; i++) {
scanf("%d%d", &x, &y);
to[++ct] = --y, next[ct] = head[--x], head[x] = ct;
to[++ct] = x, next[ct] = head[y], head[y] = ct;
}
for (int i = 0; i < n; i++) dfs(i, -1, i);
memset(dp, -1, sizeof(dp));
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++) ans = max(ans, dpf(i, j));
printf("%lld", ans);
}
Codeforces 1292C Xenon's Attack on the Gangs 题解的更多相关文章
- CF1292C Xenon's Attack on the Gangs 题解
传送门 题目描述 输入格式 输出格式 题意翻译 给n个结点,n-1条无向边.即一棵树.我们需要给这n-1条边赋上0~ n-2不重复的值.mex(u,v)表示从结点u到结点v经过的边权值中没有出现的最小 ...
- CF1292C Xenon's Attack on the Gangs
题目链接:https://codeforces.com/problemset/problem/1292/C 题意 在一颗有n个节点的树上,给每个边赋值,所有的值都在\([0,n-2]\)内并且不重复, ...
- Xenon's Attack on the Gangs(树规)
题干 Input Output Example Test 1: Test 2: 3 5 1 2 1 2 2 3 1 3 1 4 3 5 3 10 Tips 译成人话 给n个结点,n-1条无向边.即一棵 ...
- Xenon's Attack on the Gangs,题解
题目: 题意: 有一个n个节点的树,边权为0-n-2,定义mex(a,b)表示除了ab路径上的自然数以外的最小的自然数,求如何分配边权使得所有的mex(a,b)之和最大. 分析: 看似有点乱,我们先不 ...
- 【树形DP】CF 1293E Xenon's Attack on the Gangs
题目大意 vjudge链接 给n个结点,n-1条无向边.即一棵树. 我们需要给这n-1条边赋上0~ n-2不重复的值. mex(u,v)表示从结点u到结点v经过的边权值中没有出现的最小非负整数. 计算 ...
- Codeforces Round #609 (Div. 2)前五题题解
Codeforces Round #609 (Div. 2)前五题题解 补题补题…… C题写挂了好几个次,最后一题看了好久题解才懂……我太迟钝了…… 然后因为longlong调了半个小时…… A.Eq ...
- Educational Codeforces Round 48 (Rated for Div. 2) CD题解
Educational Codeforces Round 48 (Rated for Div. 2) C. Vasya And The Mushrooms 题目链接:https://codeforce ...
- Codeforces Round #542 [Alex Lopashev Thanks-Round] (Div. 2) 题解
Codeforces Round #542 [Alex Lopashev Thanks-Round] (Div. 2) 题目链接:https://codeforces.com/contest/1130 ...
- Educational Codeforces Round 59 (Rated for Div. 2) DE题解
Educational Codeforces Round 59 (Rated for Div. 2) D. Compression 题目链接:https://codeforces.com/contes ...
随机推荐
- (三)Host头攻击
01 漏洞描述 为了方便获取网站域名,开发人员一般依赖于请求包中的Host首部字段.例如,在php里用_SERVER["HTTP_HOST"].但是这个Host字段值是不可信赖的( ...
- Java培训Day02——制作疫情地图(一)
一.前言 此次培训,是为期三天的网上培训.最终的目的是制作出疫情地图.首先我们来看看主要的讲课内容大纲. Day1 |-Java语法学习(个人感觉讲得还可以,主要围绕本次培训作出的讲解,没有像网上的基 ...
- 大型Electron应用本地数据库技术选型
开发一个大型Electron的应用,或许需要在客户端存储大量的数据,比如聊天应用或邮件客户端 可选的客户端数据库方案看似很多,但一一对比下来,最优解只有一个 接下来我们就一起来经历一下这个技术选型的过 ...
- Windows下mysql的基础操作
1.数据库表操作: - 首先启动mysql服务器,在安装mysql的目录下打开cmd窗口,运行mysql:'mysql.exe -hlocalhost -p3306 -uroot -p123456'; ...
- Jquery封装: 地区选择联动插件
请点击下载百度云链接: 链接: https://pan.baidu.com/s/1plVmdJT2O4fLJokyJDQA2g 密码: aqt2
- ecshop头部添加所在城市
首先,在/includes/lib_main.php中,找到代码:function assign_template($ctype = '', $catlist = array()) ,在方法中添加 ...
- Springboot拦截器实现IP黑名单
Springboot拦截器实现IP黑名单 一·业务场景和需要实现的功能 以redis作为IP存储地址实现. 业务场景:针对秒杀活动或者常规电商业务场景等,防止恶意脚本不停的刷接口. 实现功能:写一个拦 ...
- 懒羊羊找朋友(struct实现优先排序)
4907: 懒羊羊找朋友(点击) 时间限制: 1 Sec 内存限制: 128 MB ...
- UDF_表值函数与标量函数的区别_分割字符串成单个的字符并返回表(插入到表中)
UDF_区别_分割字符串成单个的字符并返回表(插入到表中) /* SQL表值函数和标量值函数的区别 实验环境:SQL Server 2014,参考maomao365有改编 在sqlserver中存储过 ...
- loadrunner安装负载机
1,安装docker 2,下载最新版本的load_generator镜像,命令如下: docker pull hpsoftware/load_generator 3,load_generator镜像实 ...