Codeforces 1292C Xenon's Attack on the Gangs 题解
题目
On another floor of the A.R.C. Markland-N, the young man Simon "Xenon" Jackson, takes a break after finishing his project early (as always). Having a lot of free time, he decides to put on his legendary hacker "X" instinct and fight against the gangs of the cyber world.
His target is a network of \(n\) small gangs. This network contains exactly \(n−1\) direct links, each of them connecting two gangs together. The links are placed in such a way that every pair of gangs is connected through a sequence of direct links.
By mining data, Xenon figured out that the gangs used a form of cross-encryption to avoid being busted: every link was assigned an integer from \(0\) to \(n−2\) such that all assigned integers are distinct and every integer was assigned to some link. If an intruder tries to access the encrypted data, they will have to surpass \(S\) password layers, with \(S\) being defined by the following formula:
\]
Here, \(mex(u,v)\) denotes the smallest non-negative integer that does not appear on any link on the unique simple path from gang \(u\) to gang \(v\).
Xenon doesn't know the way the integers are assigned, but it's not a problem. He decides to let his AI's instances try all the passwords on his behalf, but before that, he needs to know the maximum possible value of \(S\), so that the AIs can be deployed efficiently.
Now, Xenon is out to write the AI scripts, and he is expected to finish them in two hours. Can you find the maximum possible \(S\) before he returns?
输入格式
The first line contains an integer \(n (2 \le n \le 3000)\), the number of gangs in the network.
Each of the next n−1 lines contains integers \(u_i\) and \(v_i (1 \le u_i,v_i \le n; u_i \ne v_i)\), indicating there's a direct link between gangs \(u_i\) and \(v_i\).
It's guaranteed that links are placed in such a way that each pair of gangs will be connected by exactly one simple path.
输出格式
print the maximum possible value of \(S\) — the number of password layers in the gangs' network.
样例输入1
3
1 2
2 3
样例输出1
3
样例输入1
5
1 2
1 3
1 4
3 5
样例输出1
10
注意
In the first example, one can achieve the maximum \(S\) with the following assignment:

With this assignment, \(mex(1,2)=0\), \(mex(1,3)=24\) and \(mex(2,3)=1\). Therefore, \(S=0+2+1=3\).
In the second example, one can achieve the maximum \(S\) with the following assignment:

With this assignment, all non-zero mex value are listed below:
- \(mex(1,3)=1\)
- \(mex(1,5)=2\)
- \(mex(2,3)=1\)
- \(mex(2,5)=2\)
- \(mex(3,4)=1\)
- \(mex(4,5)=3\)
Therefore, \(S=1+2+1+2+1+3=10\).
题解

看一下样例2
首先考虑边权为\(0\)的这条边,只要通过这条边的,最小的整数就是\(1\)了,那么经过这条边路径的个数就是\(0\)贡献的代价,即这条边右边的点数量乘左边点数量:\(2 \times 3 = 6\)
再考虑\(1\),如果单独考虑它,经过它的最小整数是\(0\),对答案没有一点贡献了,所以必须和1组合起来,那么把\(0-1\)看做一个整体,右边一个点,左边3个点,所以贡献就是\(1 \times 3 = 3\)
注意这里的贡献是1的原因是之前已经有一层1的贡献,这里是2的贡献,所以每条链只多了1的贡献
对于\(2\),必须和\(0,1\)组合起来,而且只能考虑\(2-0-1\)这一条链,所以左边1个点,右边1个点,贡献就是\(1 \times 1 = 1\)
对于\(3\),无法构成一条链,贡献就是\(0\)
所以加起来就是\(10\),和样例输出一样
注意从小到大所有权值必须在一条链上,如果不够成一条链,比如\(3\),最小整数就是\(0\),相当于没有贡献了
简化模型,只考虑一条链

设\(dp_{i,j}\)为从\(i\)到\(j\)的\(S\)最大值
然后把左边的点数后右边点数的积加上中间的链的dp值,中间的dp值就可以用递归实现.
注意这里的递归可以使用记忆化搜索.
#include <cstdio>
#include <cstring>
#define max(a, b) ((a) > (b) ? (a) : (b))
const int maxn = 3005;
long long dp[maxn][maxn], cnt[maxn][maxn], ans;
int fa[maxn][maxn], head[maxn << 1], next[maxn << 1], to[maxn << 1], n, x, y, ct;
void dfs(int x, int f, int root) {
cnt[root][x] = 1;
fa[root][x] = f;
for (int i = head[x]; i; i = next[i]) {
if (to[i] == f) continue;
dfs(to[i], x, root);
cnt[root][x] += cnt[root][to[i]];
}
}
long long dpf(int x, int y) {
if (x == y) return 0;
if (dp[x][y] != -1) return dp[x][y];
return dp[x][y] = cnt[y][x] * cnt[x][y] + max(dpf(fa[y][x], y), dpf(x, fa[x][y]));
}
int main() {
scanf("%d", &n);
for (int i = 1; i < n; i++) {
scanf("%d%d", &x, &y);
to[++ct] = --y, next[ct] = head[--x], head[x] = ct;
to[++ct] = x, next[ct] = head[y], head[y] = ct;
}
for (int i = 0; i < n; i++) dfs(i, -1, i);
memset(dp, -1, sizeof(dp));
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++) ans = max(ans, dpf(i, j));
printf("%lld", ans);
}
Codeforces 1292C Xenon's Attack on the Gangs 题解的更多相关文章
- CF1292C Xenon's Attack on the Gangs 题解
传送门 题目描述 输入格式 输出格式 题意翻译 给n个结点,n-1条无向边.即一棵树.我们需要给这n-1条边赋上0~ n-2不重复的值.mex(u,v)表示从结点u到结点v经过的边权值中没有出现的最小 ...
- CF1292C Xenon's Attack on the Gangs
题目链接:https://codeforces.com/problemset/problem/1292/C 题意 在一颗有n个节点的树上,给每个边赋值,所有的值都在\([0,n-2]\)内并且不重复, ...
- Xenon's Attack on the Gangs(树规)
题干 Input Output Example Test 1: Test 2: 3 5 1 2 1 2 2 3 1 3 1 4 3 5 3 10 Tips 译成人话 给n个结点,n-1条无向边.即一棵 ...
- Xenon's Attack on the Gangs,题解
题目: 题意: 有一个n个节点的树,边权为0-n-2,定义mex(a,b)表示除了ab路径上的自然数以外的最小的自然数,求如何分配边权使得所有的mex(a,b)之和最大. 分析: 看似有点乱,我们先不 ...
- 【树形DP】CF 1293E Xenon's Attack on the Gangs
题目大意 vjudge链接 给n个结点,n-1条无向边.即一棵树. 我们需要给这n-1条边赋上0~ n-2不重复的值. mex(u,v)表示从结点u到结点v经过的边权值中没有出现的最小非负整数. 计算 ...
- Codeforces Round #609 (Div. 2)前五题题解
Codeforces Round #609 (Div. 2)前五题题解 补题补题…… C题写挂了好几个次,最后一题看了好久题解才懂……我太迟钝了…… 然后因为longlong调了半个小时…… A.Eq ...
- Educational Codeforces Round 48 (Rated for Div. 2) CD题解
Educational Codeforces Round 48 (Rated for Div. 2) C. Vasya And The Mushrooms 题目链接:https://codeforce ...
- Codeforces Round #542 [Alex Lopashev Thanks-Round] (Div. 2) 题解
Codeforces Round #542 [Alex Lopashev Thanks-Round] (Div. 2) 题目链接:https://codeforces.com/contest/1130 ...
- Educational Codeforces Round 59 (Rated for Div. 2) DE题解
Educational Codeforces Round 59 (Rated for Div. 2) D. Compression 题目链接:https://codeforces.com/contes ...
随机推荐
- 从零搭建Window前端开发环境
前言 作为一个小前端,是否因为搭建环境烦恼过,是否因为npm等国外镜像踩坑过,不要怕,接下来跟着我一步步搭建适合自己的开发环境吧!!! node 这个不用说了吧,我们经常和他打交道,无论是 gulp. ...
- MYSQL 实现ROWNO功能
select tt.rowno from( select (@rownum:=@rownum+1) as rowno, t.id from news t ,(select (@rownum : ...
- synchronized 和 java.util.concurrent.locks.Lock 的异同 ?
主要相同点:Lock 能完成 synchronized 所实现的所有功能 主要不同点:Lock 有比synchronized 更精确的线程语义和更好的性能. synchronized 会自动释放锁,而 ...
- kali系统安装后乱码的解决
1.先添加kaili的源地址*(这里推荐了几个源,选一个就可以.打开/etc/apt/sources.list 删除里面自带的所有内容,把你复制的内容添加进去保存就ok了) #中科大 deb http ...
- 关于宝塔面板ftp+sublime
如果sublime通过ftp上传文件传不上去,我的问题在于应该把sftp-config.json中"remote_path": "/",设置成这样.一下午.哎呀 ...
- easypoi 读取 Excel 简单应用
背景 在做接口测试的时候,经常会使用 Excel 来存储对应的接口信息和用例信息,为了方便程序的读取,引入easypoi 工具来读取 Excel 内容.easypoi 比起 poi 使用更加的方便,代 ...
- Flask 蓝图(Blueprint)使用方式解析
Flask蓝图提供了模块化管理程序路由的功能,使程序结构清晰.简单易懂.下面分析蓝图的使用方法 假如说我们要为某所学校的每个人建立一份档案,一个很自然的优化方式就是这些档案如果能分类管理,就是说假如分 ...
- (四)进行HTTPS请求并进行(或不进行)证书校验(示例)
原文:https://blog.csdn.net/justry_deng/article/details/81042379 相关方法详情(非完美封装): /** * 根据是否是https请求,获取Ht ...
- 浅淡i.MX8M Mini处理器的效能以及平台对比
i.MX 8M Mini是恩智浦首款嵌入式多核应用处理器,定位在任何通用工业和物联网的应用,是一款针对边缘计算应用的芯片,也是恩智普i.MX系列中第一个加了机器学习核的产品线.这颗芯片采用先进的14L ...
- Linux 安装指定jdk版本
操作步骤 卸载系统自带jdk版本 1.查看安装的jdk rpm -qa | grep java 2.卸载系统自带jdk rpm -e --nodeps 包名 下载jdk 当前最新版本下载地址:http ...