洛谷 P3592 [POI2015]MYJ
题意
给定\(m\)个区间\([a_i,b_i]\)以及\(c_i\),对于一个含有\(n\)个元素的序列\(ans[]\),区间\(i\)对其的贡献为\(\min\{ans_i\}(i\in[a_i,b_i])<=c_i\ ?\ \min\{ans_i\}(i\in[a_i,b_i])\ :\ 0\),要求构造一个序列\(ans[]\),最大化区间的贡献之和。
\(n\leq50,m\leq4000\)
思路
离散化+区间\(\texttt{DP}\)
打死都不可能想到状态设计DP系列
稍作分析半天就会发现:存在一组答案使得每个\(ans_i\)都是某个\(c_i\)。因为把某个答案替换成第一个大于等于它的\(c_i\)不会更劣,因此\(c_i\)的值并不影响做题,但是大小顺序是有用的所以我们将\(c_i\)离散化。
因为一个区间的代价之和只与最小值有关,而且数据范围的\(n\)也不大,所以考虑区间\(\texttt{DP}\):
设\(f[l][r][k]\)表示区间\([l,r]\)内\(ans[]\)的最小值等于\(k\)的最大收益,\(g[p][j]\)为当前区间穿过\(p\),且\(c\geq j\)的区间数量
枚举最小的位置\(p\),那么包含\(p\)的区间的答案全都是\(k\),之后转移
\]
\(\texttt{DP}\)时顺便记录记录决策点,然后\(dfs\)输出
时间复杂度\(O(n^3m)\)
代码
/*
Author:Loceaner
区间DP
*/
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int A = 51;
const int B = 4011;
const int mod = 1e9 + 7;
const int inf = 0x3f3f3f3f;
inline int read() {
char c = getchar(); int x = 0, f = 1;
for ( ; !isdigit(c); c = getchar()) if (c == '-') f = -1;
for ( ; isdigit(c); c = getchar()) x = x * 10 + (c ^ 48);
return x * f;
}
struct node { int l, r, c; } a[B];
int n, m, tot, ans[B], res[B];
int pre[A][A][B], f[A][A][B], pos[A][A][B], g[A][B];
inline void work(int l, int r, int now) {
if (l > r) return;
int qwq = pos[l][r][now = pre[l][r][now]];
ans[qwq] = res[now];
work(l, qwq - 1, now), work(qwq + 1, r, now);
}
inline void update(int l, int r) {
for (int i = l; i <= r; i++)
for (int minn = 0; minn <= tot; minn++) g[i][minn] = 0;
for (int i = 1; i <= m; i++)
if (l <= a[i].l && a[i].r <= r)
for (int j = a[i].l; j <= a[i].r; j++) g[j][a[i].c]++;
for (int i = l; i <= r; i++)
for (int j = tot - 1; j >= 1; j--) g[i][j] += g[i][j + 1];
}
inline void dp(int l, int r) {
for (int k = tot; k >= 1; k--) {
int maxn = 0;
for (int p = l; p <= r; p++) {
int now = f[l][p - 1][k] + f[p + 1][r][k] + g[p][k] * res[k];
if (maxn <= now) maxn = now, pos[l][r][k] = p;
}
if (maxn >= f[l][r][k + 1]) f[l][r][k] = maxn, pre[l][r][k] = k;
else f[l][r][k] = f[l][r][k + 1], pre[l][r][k] = pre[l][r][k + 1];
}
}
signed main() {
n = read(), m = read();
for (int i = 1; i <= m; i++)
a[i].l = read(), a[i].r = read(), a[i].c = read(), res[i] = a[i].c;
sort(res + 1, res + 1 + m);
tot = unique(res + 1, res + m + 1) - res - 1;
for (int i = 1; i <= m; i++)
a[i].c = lower_bound(res + 1, res + tot + 1, a[i].c) - res;
for (int i = n; i >= 1; i--)
for (int j = i; j <= n; j++)
update(i, j), dp(i, j);
work(1, n, 1);
cout << f[1][n][1] << '\n';
for (int i = 1; i <= n; i++) cout << ans[i] << " ";
return 0;
}
洛谷 P3592 [POI2015]MYJ的更多相关文章
- P3592 [POI2015]MYJ
P3592 [POI2015]MYJ 一道比较烦的区间dp.. 昨天上课讲到了这题,然后就在lg翻到了 然后调了很久很久..... 设\(f[l][r][k]\)为区间\([l,r]\)中,最小值\( ...
- luogu P3592 [POI2015]MYJ
题目链接 luogu P3592 [POI2015]MYJ 题解 区间dp 设f[l][r][k]表示区间l到r内最小值>=k的最大收益 枚举为k的位置p,那么包含p的区间答案全部是k 设h[i ...
- 洛谷P3582 [POI2015]KIN
题目描述 共有\(m\)部电影,编号为\(1--m\),第\(i\)部电影的好看值为\(w[i]\).在\(n\)天之中(从\(1~n\)编号)每天会放映一部电影,第\(i\)天放映的是第\(f[i] ...
- BZOJ 4385 洛谷3594 POI2015 WIL-Wilcze doły
[题解] 手残写错调了好久QAQ...... 洛谷的数据似乎比较水.. n个正整数!!这很重要 这道题是个类似two pointer的思想,外加一个单调队列维护当前区间内长度为d的子序列中元素之和的最 ...
- 洛谷 P3586 [POI2015]LOG
P3586 [POI2015]LOG 题目描述 维护一个长度为n的序列,一开始都是0,支持以下两种操作:1.U k a 将序列中第k个数修改为a.2.Z c s 在这个序列上,每次选出c个正数,并将它 ...
- 洛谷P3588 - [POI2015]Pustynia
Portal Description 给定一个长度为\(n(n\leq10^5)\)的正整数序列\(\{a_n\}\),每个数都在\([1,10^9]\)范围内,告诉你其中\(s\)个数,并给出\(m ...
- 洛谷 P3585 [POI2015]PIE
P3585 [POI2015]PIE 题目描述 一张n*m的方格纸,有些格子需要印成黑色,剩下的格子需要保留白色.你有一个a*b的印章,有些格子是凸起(会沾上墨水)的.你需要判断能否用这个印章印出纸上 ...
- 洛谷P3588 [POI2015]PUS
题面 sol:说了是线段树优化建图的模板... 就是把一整个区间的点连到一个点上,然后用那个点来连需要连一整个区间的点就可以了,就把边的条数优化成n*log(n)了 #include <queu ...
- 洛谷P3586 [POI2015]LOG(贪心 权值线段树)
题意 题目链接 Sol 显然整个序列的形态对询问没什么影响 设权值\(>=s\)的有\(k\)个. 我们可以让这些数每次都被选择 那么剩下的数,假设值为\(a_i\)次,则可以\(a_i\)次被 ...
随机推荐
- Linux目录处理命令cd、pwd、rmdir、cp、mv、rm详解
命令cd详解 命令cd(英文原意:change directory),命令路径及执行权限为: 可以看到它的路径为/usr/bin/cd,因此,它的执行权限是所有用户 基本功能是切换目录,例如:cd . ...
- 使用dotnet Cli向nuget发布包
长话短说, 今天分享如何在nuget.org创建并发布.NET Standard package. 前置 安装勾选.NET Core开发套件的Visual Studio; 安装dotnet Cli 从 ...
- Tomcat线程模型分析及源码解读
1 四种线程模型 配置方法:在tomcat conf 下找到server.xml,在<Connector port="8080" protocol="HTTP/1 ...
- SQL手工注入绕过过滤
1.考虑闭合:单引号 --> %27 空格-->%20 井号--> %23 : 构造闭合函数 %27teacher%23 2.判断过滤内容:union --> uniu ...
- BitMap算法及其实现(Python)
BitMap概述 本文介绍 BitMap 算法的应用背景,算法思想和相关实现细节. 概括而言,BitMap 主要用来解决海量数据中元素查询,去重.以及排序等问题.这里对海量数据场景的强调,似乎暗示了这 ...
- java之单点登录(SSO)
单点登录(SSO):SSO是指在多个应用系统中个,用户只需要登陆一次就可以访问所有相互信任的应用系统.它包括可以将这次主要的登录映射到其他应用中用于同一用户的登陆的机制. SSO的实现过程: 通过上述 ...
- Centos 7 k8s Deployment新副本控制器
一.概念 Kubernetes提供了一种更加简单的更新RC和Pod的机制,叫做Deployment.通过在Deployment中描述你所期望的集群状态,Deployment Controller会将在 ...
- 如何在宝塔上的Nginx实现负载均衡
创建一个指向服务器本身的localhost站点(127.0.0.1)和一个指向服务器的站点,域名和IP都可以. I.对域名站点配置: upstream myproj { server 127.0.0 ...
- 【实战】基于OpenCV的水表字符识别(OCR)
目录 1. USB摄像头取图 2. 图像预处理:获取屏幕ROI 2.1. 分离提取屏幕区域 2.2. 计算屏幕区域的旋转角度 2.3. 裁剪屏幕区域 2.4. 旋转图像至正向视角 2.5. 提取文字图 ...
- android中getWidth()和getMeasuredWidth()之间的区别
先给出一个结论:getMeasuredWidth()获取的是view原始的大小,也就是这个view在XML文件中配置或者是代码中设置的大小.getWidth()获取的是这个view最终显示的大小,这个 ...