题意

给定\(m\)个区间\([a_i,b_i]\)以及\(c_i\),对于一个含有\(n\)个元素的序列\(ans[]\),区间\(i\)对其的贡献为\(\min\{ans_i\}(i\in[a_i,b_i])<=c_i\ ?\ \min\{ans_i\}(i\in[a_i,b_i])\ :\ 0\),要求构造一个序列\(ans[]\),最大化区间的贡献之和。

\(n\leq50,m\leq4000\)

思路

离散化+区间\(\texttt{DP}\)

打死都不可能想到状态设计DP系列

稍作分析半天就会发现:存在一组答案使得每个\(ans_i\)都是某个\(c_i\)。因为把某个答案替换成第一个大于等于它的\(c_i\)不会更劣,因此\(c_i\)的值并不影响做题,但是大小顺序是有用的所以我们将\(c_i\)离散化。

因为一个区间的代价之和只与最小值有关,而且数据范围的\(n\)也不大,所以考虑区间\(\texttt{DP}\):

设\(f[l][r][k]\)表示区间\([l,r]\)内\(ans[]\)的最小值等于\(k\)的最大收益,\(g[p][j]\)为当前区间穿过\(p\),且\(c\geq j\)的区间数量

枚举最小的位置\(p\),那么包含\(p\)的区间的答案全都是\(k\),之后转移

\[f[l][r][k]=\max(\max(f[l][p - 1][k] + f[p + 1][r][k]+g[p][k]*k,p\in[l,r]),f[l][r][k+1])
\]

\(\texttt{DP}\)时顺便记录记录决策点,然后\(dfs\)输出

时间复杂度\(O(n^3m)\)

代码

/*
Author:Loceaner
区间DP
*/
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std; const int A = 51;
const int B = 4011;
const int mod = 1e9 + 7;
const int inf = 0x3f3f3f3f; inline int read() {
char c = getchar(); int x = 0, f = 1;
for ( ; !isdigit(c); c = getchar()) if (c == '-') f = -1;
for ( ; isdigit(c); c = getchar()) x = x * 10 + (c ^ 48);
return x * f;
} struct node { int l, r, c; } a[B];
int n, m, tot, ans[B], res[B];
int pre[A][A][B], f[A][A][B], pos[A][A][B], g[A][B]; inline void work(int l, int r, int now) {
if (l > r) return;
int qwq = pos[l][r][now = pre[l][r][now]];
ans[qwq] = res[now];
work(l, qwq - 1, now), work(qwq + 1, r, now);
} inline void update(int l, int r) {
for (int i = l; i <= r; i++)
for (int minn = 0; minn <= tot; minn++) g[i][minn] = 0;
for (int i = 1; i <= m; i++)
if (l <= a[i].l && a[i].r <= r)
for (int j = a[i].l; j <= a[i].r; j++) g[j][a[i].c]++;
for (int i = l; i <= r; i++)
for (int j = tot - 1; j >= 1; j--) g[i][j] += g[i][j + 1];
} inline void dp(int l, int r) {
for (int k = tot; k >= 1; k--) {
int maxn = 0;
for (int p = l; p <= r; p++) {
int now = f[l][p - 1][k] + f[p + 1][r][k] + g[p][k] * res[k];
if (maxn <= now) maxn = now, pos[l][r][k] = p;
}
if (maxn >= f[l][r][k + 1]) f[l][r][k] = maxn, pre[l][r][k] = k;
else f[l][r][k] = f[l][r][k + 1], pre[l][r][k] = pre[l][r][k + 1];
}
} signed main() {
n = read(), m = read();
for (int i = 1; i <= m; i++)
a[i].l = read(), a[i].r = read(), a[i].c = read(), res[i] = a[i].c;
sort(res + 1, res + 1 + m);
tot = unique(res + 1, res + m + 1) - res - 1;
for (int i = 1; i <= m; i++)
a[i].c = lower_bound(res + 1, res + tot + 1, a[i].c) - res;
for (int i = n; i >= 1; i--)
for (int j = i; j <= n; j++)
update(i, j), dp(i, j);
work(1, n, 1);
cout << f[1][n][1] << '\n';
for (int i = 1; i <= n; i++) cout << ans[i] << " ";
return 0;
}

洛谷 P3592 [POI2015]MYJ的更多相关文章

  1. P3592 [POI2015]MYJ

    P3592 [POI2015]MYJ 一道比较烦的区间dp.. 昨天上课讲到了这题,然后就在lg翻到了 然后调了很久很久..... 设\(f[l][r][k]\)为区间\([l,r]\)中,最小值\( ...

  2. luogu P3592 [POI2015]MYJ

    题目链接 luogu P3592 [POI2015]MYJ 题解 区间dp 设f[l][r][k]表示区间l到r内最小值>=k的最大收益 枚举为k的位置p,那么包含p的区间答案全部是k 设h[i ...

  3. 洛谷P3582 [POI2015]KIN

    题目描述 共有\(m\)部电影,编号为\(1--m\),第\(i\)部电影的好看值为\(w[i]\).在\(n\)天之中(从\(1~n\)编号)每天会放映一部电影,第\(i\)天放映的是第\(f[i] ...

  4. BZOJ 4385 洛谷3594 POI2015 WIL-Wilcze doły

    [题解] 手残写错调了好久QAQ...... 洛谷的数据似乎比较水.. n个正整数!!这很重要 这道题是个类似two pointer的思想,外加一个单调队列维护当前区间内长度为d的子序列中元素之和的最 ...

  5. 洛谷 P3586 [POI2015]LOG

    P3586 [POI2015]LOG 题目描述 维护一个长度为n的序列,一开始都是0,支持以下两种操作:1.U k a 将序列中第k个数修改为a.2.Z c s 在这个序列上,每次选出c个正数,并将它 ...

  6. 洛谷P3588 - [POI2015]Pustynia

    Portal Description 给定一个长度为\(n(n\leq10^5)\)的正整数序列\(\{a_n\}\),每个数都在\([1,10^9]\)范围内,告诉你其中\(s\)个数,并给出\(m ...

  7. 洛谷 P3585 [POI2015]PIE

    P3585 [POI2015]PIE 题目描述 一张n*m的方格纸,有些格子需要印成黑色,剩下的格子需要保留白色.你有一个a*b的印章,有些格子是凸起(会沾上墨水)的.你需要判断能否用这个印章印出纸上 ...

  8. 洛谷P3588 [POI2015]PUS

    题面 sol:说了是线段树优化建图的模板... 就是把一整个区间的点连到一个点上,然后用那个点来连需要连一整个区间的点就可以了,就把边的条数优化成n*log(n)了 #include <queu ...

  9. 洛谷P3586 [POI2015]LOG(贪心 权值线段树)

    题意 题目链接 Sol 显然整个序列的形态对询问没什么影响 设权值\(>=s\)的有\(k\)个. 我们可以让这些数每次都被选择 那么剩下的数,假设值为\(a_i\)次,则可以\(a_i\)次被 ...

随机推荐

  1. java实现第四届蓝桥杯剪格子

    剪格子 题目描述 如图p1.jpg所示,3 x 3 的格子中填写了一些整数. 我们沿着图中的红色线剪开,得到两个部分,每个部分的数字和都是60. 本题的要求就是请你编程判定:对给定的m x n 的格子 ...

  2. CDN HTTPS安全加速基本概念、解决方案及优化实践

    大家都知道,HTTP 本身是明文传输的,没有经过任何安全处理,网站HTTPS解决方案通过在HTTP协议之上引入证书服务,完美解决网站的安全问题.本文将为大家介绍阿里云CDN HTTPS安全加速传输的基 ...

  3. .NET Core 工作单元unitofwork 实现,基于NPOCO

    现有项目中的orm 并非efcore,而是非主流的npoco,本身没有自带工作单元所以需要自己手撸一个,现记录一下,基于其他orm的工作单元照例实现应该没有什么问题 该实现基于NPOCO,针对其他的O ...

  4. 【个人博客 hexo】一个小时就搭好属于自己的博客

    对于经常需要发博客的小伙伴来说,拥有一个属于自己的博客网站,听起来是不是很酷. 今天我就来告诉大家,怎么搭建一个属于自己的博客网站,我们需要的就是使用hexo+github来搭建我们自己博客系统. 你 ...

  5. Spring Boot 教程 - Elasticsearch

    1. Elasticsearch简介 Elasticsearch是一个基于Lucene的搜索服务器.它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口.Elasticsearc ...

  6. Python--循环--for && while

    for循环示例:猜数字游戏 winning_number = 38 for i in range(3): guess_num = int(input("guess num:") ) ...

  7. laravel表单中文错误提示本地化

    <?php return [ /* |-------------------------------------------------------------------------- | V ...

  8. EIGRP-15-其他和高级的EIGRP特性-1-路由器ID

    与很多协议一样, EIGRP也使用了路由器ID (RTD)的概念,用一个4字节的编号来标识某个路由器实例.每个地址家族实例拥有自已独立的RID.工程师可以在一台路由器上,为多个EIGRP进程和地址家族 ...

  9. java中工厂模式

    最近在项目中使用了工厂模式来重构下之前的代码,在这里做个小结. 工厂模式最主要的特点是每次新增一个产品的时候,都需要新增一个新的工厂,这样在对于新的产品做扩展的时候,减少对客户端代码的修改. 我在项目 ...

  10. tensorflow-TFRecord 文件详解

    TFRecord 是 tensorflow 内置的文件格式,它是一种二进制文件,具有以下优点: 1. 统一各种输入文件的操作 2. 更好的利用内存,方便复制和移动 3. 将二进制数据和标签(label ...