C.Increase and Copy #枚举

题目链接

题意

最初你有仅包含一个数字\(1\)的数组\(a\),一次操作中可对该数组进行两类操作:

  • 从数组中选择一个元素,将该元素\(+1\);
  • 从数组中选择一个元素,复制该元素放到原数组末端。

你需要在尽可能少的操作次数下,使得该数组所有元素值之和不小于\(n\)(\(n\leq 1e9\)),现要你求出最少操作次数

分析

显然,操作过程中,一定是先对最初元素不断自增,直到某个值后,再复制这个元素,即先进行第一类操作再进行第二类,这样能够保证操作次数尽可能少。

那么我们应该将最初元素加到多少才复制呢?我们可以枚举该元素可以增加\(i\),那么消耗次数为\(i-1\),那么接下来复制次数即为\(\lceil{\frac{n - i}{i}} \rceil\),故总消耗次数为\(i-1+\lceil{\frac{n - i}{i}} \rceil\)。枚举\(i\),找到\(i-1+\lceil{\frac{n - i}{i}} \rceil\)的最小值即可。另外,我们无需从\(1\)枚举到\(n\),枚举到\(\sqrt{n}\)即可。

#include <string>
#include <cstring>
#include <cstdio>
#include <iostream>
#include <stack>
#include <cmath>
#include <queue>
#include <map>
#include <vector>
#include <deque>
#include <algorithm>
#include <unordered_map>
using namespace std;
typedef long long ll;
const int MAXN = 15;
int q, n;
int main(){
scanf("%d", &q);
while(q--){
scanf("%d", &n);
int mymin = 0x3f3f3f3f;
for(int i = 1; i * i <= n; i++){
int sum = (i - 1) + (n - i) / i + ((n - i) % i != 0);
mymin = min(mymin, sum);
}
printf("%d\n", mymin);
}
return 0;
}

由官方题解思路,因为所求最值应该在\(\sqrt{n}\)的附近,我们枚举\([\lfloor \sqrt{n}\rfloor+5, \lfloor \sqrt{n}\rfloor-5]\)找最值,就能达到\(O(1)\)复杂度了。

D. Non-zero Segments #前缀和 #哈希表

题目链接

题意

给定长为\(n\)、包含正整数、也会包含负整数、但一定不包含\(0\)的数组\(a\),你需要在这个数组中某些位置插入任意值,保证该数组任意区间值之等于\(0\),现要你求出最少插入元素数量。

分析

设该数组前缀和\(sum_i\),我们知道,某个区间\([l, r]\)的值之和为\(0\),那么就意味着\(sum_r\)与\(sum_l\)是相等的。于是,我们便可通过哈希表去记录某个前缀和是否出现过,一旦出现过,假设从左到右遍历到\(i\),发现当前的前缀和\(sum_i\),在之前出现过,说明这一中间区间的权值之和一定为\(0\),那么按照题目要求,我们将某个值插入到\(i\)的前面,使得这一中间区间的权值之和不为0的同时,保证不会与后面区间相加为\(0\)(实际插入值无需真的确定下来),此时答案加\(1\)(当然,这只是个假想的插入操作,无需真的模拟,只需要将当前前缀和置为\(0\),从\(i\)开始重新计\(sum\)即可)。别忘了,每次迭代的过程中,要记录当前前缀和到哈希表中。另外预处理时,应将前缀和为\(0\)记录到哈希表,因为有可能相邻两元素恰好为相反数。

#include <string>
#include <cstring>
#include <cstdio>
#include <iostream>
#include <stack>
#include <cmath>
#include <queue>
#include <map>
#include <vector>
#include <deque>
#include <algorithm>
#include <unordered_map>
using namespace std;
typedef long long ll;
const int MAXN = 2e5+5;
unordered_map<ll, int> mymap;
int main(){
int n, ans = 0;
scanf("%d", &n);
ll sum = 0, cur;
mymap[0] = 1; //考虑到相邻元素恰为相反数
for(int i = 1; i <= n; i++){
scanf("%lld", &cur);
sum += cur;
if(mymap[sum] > 0){ //发现之前出现过该前缀和
mymap.clear();
mymap[0] = 1;
sum = cur; //前缀和清零(假想cur之前插入了一个数,保证前面区间不会与后面区间相加为0)
ans++;
}
mymap[sum]++;//记录该前缀和
}
printf("%d\n", ans);
return 0;
}

Codeforces Round #674 (Div. 3) C、D 题解的更多相关文章

  1. Codeforces Round #612 (Div. 2) 前四题题解

    这场比赛的出题人挺有意思,全部magic成了青色. 还有题目中的图片特别有趣. 晚上没打,开virtual contest打的,就会前三道,我太菜了. 最后看着题解补了第四道. 比赛传送门 A. An ...

  2. Codeforces Round #198 (Div. 2)A,B题解

    Codeforces Round #198 (Div. 2) 昨天看到奋斗群的群赛,好奇的去做了一下, 大概花了3个小时Ak,我大概可以退役了吧 那下面来稍微总结一下 A. The Wall Iahu ...

  3. Codeforces Round #672 (Div. 2) A - C1题解

    [Codeforces Round #672 (Div. 2) A - C1 ] 题目链接# A. Cubes Sorting 思路: " If Wheatley needs more th ...

  4. Codeforces Round #674 (Div. 3) F. Number of Subsequences 题解(dp)

    题目链接 题目大意 给你一个长为d只包含字符'a','b','c','?' 的字符串,?可以变成a,b,c字符,假如有x个?字符,那么有\(3^x\)个字符串,求所有字符串种子序列包含多少个abc子序 ...

  5. Codeforces Round #614 (Div. 2) A-E简要题解

    链接:https://codeforces.com/contest/1293 A. ConneR and the A.R.C. Markland-N 题意:略 思路:上下枚举1000次扫一遍,比较一下 ...

  6. Codeforces Round #610 (Div. 2) A-E简要题解

    contest链接: https://codeforces.com/contest/1282 A. Temporarily unavailable 题意: 给一个区间L,R通有网络,有个点x,在x+r ...

  7. Codeforces Round #611 (Div. 3) A-F简要题解

    contest链接:https://codeforces.com/contest/1283 A. Minutes Before the New Year 题意:给一个当前时间,输出离第二天差多少分钟 ...

  8. Codeforces Round #499 (Div. 2) D. Rocket题解

    题目: http://codeforces.com/contest/1011/problem/D This is an interactive problem. Natasha is going to ...

  9. Codeforces Round #499 (Div. 2) C Fly题解

    题目 http://codeforces.com/contest/1011/problem/C Natasha is going to fly on a rocket to Mars and retu ...

随机推荐

  1. makefile管理项目

    makefile: 管理项目. 命名:makefile Makefile --- make 命令 1 个规则: 目标:依赖条件 (一个tab缩进)命令 1. 目标的时间必须晚于依赖条件的时间,否则,更 ...

  2. js 小数点失精度

    解决方法思路:将小数化成整数后再作运算.具体代码如下:  /*** 加法运算,避免数据相加小数点后产生多位数和计算精度损失.** @param num1加数1 | num2加数2*/function ...

  3. 【转】Setting up SDL on Windows

    FROM: http://lazyfoo.net/tutorials/SDL/01_hello_SDL/windows/index.php Setting up SDL on Windows Last ...

  4. git同步源码到gitee和github

    如何把我们的源码同步到gitee或github远程仓库中 同步方式分以下几种: 1.命令同步    先查看下我们是否有远程仓库:git remote -v 如有就要删除远程仓库或是同命令覆盖,如全新安 ...

  5. MySQL索引分析及使用

    一.索引介绍 1.1.什么是索引? 一般的应用系统,读写比例在10:1左右,而且插入操作和一般的更新操作很少出现性能问题,在生产环境中,我们遇到最多的,也是最容易出问题的,还是一些复杂的查询操作,因此 ...

  6. 给萌新HTML5 入门指南(二)

    本文由葡萄城技术团队原创并首发 转载请注明出处:葡萄城官网,葡萄城为开发者提供专业的开发工具.解决方案和服务,赋能开发者. 上一篇我们已经为大家介绍了HTML5新增的内容和基础页面布局,这篇会继续向大 ...

  7. MIT 6.S081 Lab5 Copy-On-Write Fork

    前言 最近绝大多数的空闲时间都拿来锤15-445了,很久没动6.S081.前几天回头看了一下一个月前锤完的Lazy Allocation,自己写的代码几乎都不认识了.......看来总结之类的东西最好 ...

  8. js某时间与当前时间差

    function minuteFormat(min){ if(!min){ return '-'; } var result=''; if(min%(60*24*30*12)!=min){ resul ...

  9. 解决Python参考文档乱码问题

    问题如下: 解决方案: 打开IE浏览器,随便输入一个网址,在页面空白处点击右键->编码->自动选择 再次重新开启python3 帮助文档即可

  10. ES2020 系列:可选链 "?." 为啥出现,我们能用它来干啥?

    可选链 "?." 可选链 ?. 是一种访问嵌套对象属性的安全的方式.即使中间的属性不存在,也不会出现错误. "不存在的属性"的问题 如果你才刚开始读此教程并学习 ...