C.Increase and Copy #枚举

题目链接

题意

最初你有仅包含一个数字\(1\)的数组\(a\),一次操作中可对该数组进行两类操作:

  • 从数组中选择一个元素,将该元素\(+1\);
  • 从数组中选择一个元素,复制该元素放到原数组末端。

你需要在尽可能少的操作次数下,使得该数组所有元素值之和不小于\(n\)(\(n\leq 1e9\)),现要你求出最少操作次数

分析

显然,操作过程中,一定是先对最初元素不断自增,直到某个值后,再复制这个元素,即先进行第一类操作再进行第二类,这样能够保证操作次数尽可能少。

那么我们应该将最初元素加到多少才复制呢?我们可以枚举该元素可以增加\(i\),那么消耗次数为\(i-1\),那么接下来复制次数即为\(\lceil{\frac{n - i}{i}} \rceil\),故总消耗次数为\(i-1+\lceil{\frac{n - i}{i}} \rceil\)。枚举\(i\),找到\(i-1+\lceil{\frac{n - i}{i}} \rceil\)的最小值即可。另外,我们无需从\(1\)枚举到\(n\),枚举到\(\sqrt{n}\)即可。

#include <string>
#include <cstring>
#include <cstdio>
#include <iostream>
#include <stack>
#include <cmath>
#include <queue>
#include <map>
#include <vector>
#include <deque>
#include <algorithm>
#include <unordered_map>
using namespace std;
typedef long long ll;
const int MAXN = 15;
int q, n;
int main(){
scanf("%d", &q);
while(q--){
scanf("%d", &n);
int mymin = 0x3f3f3f3f;
for(int i = 1; i * i <= n; i++){
int sum = (i - 1) + (n - i) / i + ((n - i) % i != 0);
mymin = min(mymin, sum);
}
printf("%d\n", mymin);
}
return 0;
}

由官方题解思路,因为所求最值应该在\(\sqrt{n}\)的附近,我们枚举\([\lfloor \sqrt{n}\rfloor+5, \lfloor \sqrt{n}\rfloor-5]\)找最值,就能达到\(O(1)\)复杂度了。

D. Non-zero Segments #前缀和 #哈希表

题目链接

题意

给定长为\(n\)、包含正整数、也会包含负整数、但一定不包含\(0\)的数组\(a\),你需要在这个数组中某些位置插入任意值,保证该数组任意区间值之等于\(0\),现要你求出最少插入元素数量。

分析

设该数组前缀和\(sum_i\),我们知道,某个区间\([l, r]\)的值之和为\(0\),那么就意味着\(sum_r\)与\(sum_l\)是相等的。于是,我们便可通过哈希表去记录某个前缀和是否出现过,一旦出现过,假设从左到右遍历到\(i\),发现当前的前缀和\(sum_i\),在之前出现过,说明这一中间区间的权值之和一定为\(0\),那么按照题目要求,我们将某个值插入到\(i\)的前面,使得这一中间区间的权值之和不为0的同时,保证不会与后面区间相加为\(0\)(实际插入值无需真的确定下来),此时答案加\(1\)(当然,这只是个假想的插入操作,无需真的模拟,只需要将当前前缀和置为\(0\),从\(i\)开始重新计\(sum\)即可)。别忘了,每次迭代的过程中,要记录当前前缀和到哈希表中。另外预处理时,应将前缀和为\(0\)记录到哈希表,因为有可能相邻两元素恰好为相反数。

#include <string>
#include <cstring>
#include <cstdio>
#include <iostream>
#include <stack>
#include <cmath>
#include <queue>
#include <map>
#include <vector>
#include <deque>
#include <algorithm>
#include <unordered_map>
using namespace std;
typedef long long ll;
const int MAXN = 2e5+5;
unordered_map<ll, int> mymap;
int main(){
int n, ans = 0;
scanf("%d", &n);
ll sum = 0, cur;
mymap[0] = 1; //考虑到相邻元素恰为相反数
for(int i = 1; i <= n; i++){
scanf("%lld", &cur);
sum += cur;
if(mymap[sum] > 0){ //发现之前出现过该前缀和
mymap.clear();
mymap[0] = 1;
sum = cur; //前缀和清零(假想cur之前插入了一个数,保证前面区间不会与后面区间相加为0)
ans++;
}
mymap[sum]++;//记录该前缀和
}
printf("%d\n", ans);
return 0;
}

Codeforces Round #674 (Div. 3) C、D 题解的更多相关文章

  1. Codeforces Round #612 (Div. 2) 前四题题解

    这场比赛的出题人挺有意思,全部magic成了青色. 还有题目中的图片特别有趣. 晚上没打,开virtual contest打的,就会前三道,我太菜了. 最后看着题解补了第四道. 比赛传送门 A. An ...

  2. Codeforces Round #198 (Div. 2)A,B题解

    Codeforces Round #198 (Div. 2) 昨天看到奋斗群的群赛,好奇的去做了一下, 大概花了3个小时Ak,我大概可以退役了吧 那下面来稍微总结一下 A. The Wall Iahu ...

  3. Codeforces Round #672 (Div. 2) A - C1题解

    [Codeforces Round #672 (Div. 2) A - C1 ] 题目链接# A. Cubes Sorting 思路: " If Wheatley needs more th ...

  4. Codeforces Round #674 (Div. 3) F. Number of Subsequences 题解(dp)

    题目链接 题目大意 给你一个长为d只包含字符'a','b','c','?' 的字符串,?可以变成a,b,c字符,假如有x个?字符,那么有\(3^x\)个字符串,求所有字符串种子序列包含多少个abc子序 ...

  5. Codeforces Round #614 (Div. 2) A-E简要题解

    链接:https://codeforces.com/contest/1293 A. ConneR and the A.R.C. Markland-N 题意:略 思路:上下枚举1000次扫一遍,比较一下 ...

  6. Codeforces Round #610 (Div. 2) A-E简要题解

    contest链接: https://codeforces.com/contest/1282 A. Temporarily unavailable 题意: 给一个区间L,R通有网络,有个点x,在x+r ...

  7. Codeforces Round #611 (Div. 3) A-F简要题解

    contest链接:https://codeforces.com/contest/1283 A. Minutes Before the New Year 题意:给一个当前时间,输出离第二天差多少分钟 ...

  8. Codeforces Round #499 (Div. 2) D. Rocket题解

    题目: http://codeforces.com/contest/1011/problem/D This is an interactive problem. Natasha is going to ...

  9. Codeforces Round #499 (Div. 2) C Fly题解

    题目 http://codeforces.com/contest/1011/problem/C Natasha is going to fly on a rocket to Mars and retu ...

随机推荐

  1. 使用微创联合M5S空气检测仪、树莓派3b+、prometheus、grafana实现空气质量持续监控告警WEB可视化

    1.简介 使用微创联合M5S空气检测仪.树莓派3b+.prometheus.grafana实现空气质量持续监控告警WEB可视化 grafana dashboard效果: 2.背景 2.1 需求: 1. ...

  2. Redis常用命令(1)——Key

    DEL 格式:DEL key [key ...] 作用:删除一个或多个 key.不存在的 key 会被忽略. 返回值:被删除 key 的数量. 示例: 192.168.1.100:6379> s ...

  3. html input只允许输入整数

    如果想想让input输入框只输入整数,直接使用以下的input就可以了 <input id="sequence" class="o_input" onke ...

  4. Java中的微信支付(3):API V3对微信服务器响应进行签名验证

    1. 前言 牢记一句话:公钥加密,私钥解密:私钥加签,公钥验签. 微信支付V3版本前两篇分别讲了如何对请求做签名和如何获取并刷新微信平台公钥,本篇将继续展开如何对微信支付响应结果的验签. 2. 为什么 ...

  5. P1098 字符串的展开

    P1098 字符串的展开 刷新三观的模拟题 题意描述 太长了自己去看吧. 算法分析 模拟题分析你*呀! 写这篇题解的唯一原因是:三目运算符用的好的话,可以让百行大模拟变成30行水题. 代码实现 #in ...

  6. Flink的DataSource三部曲之一:直接API

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...

  7. 算法笔记之KMP算法

    本文是<算法笔记>KMP算法章节的阅读笔记,文中主要内容来源于<算法笔记>.本文主要介绍了next数组.KMP算法及其应用以及对KMP算法的优化. KMP算法主要用于解决字符串 ...

  8. Spring Cloud 纯干货,从入门到实战

    导读 之前写过一篇SpringCloud从入门到精通的点我直达,微服务基础知识点我直达,今天我们使用Spring Cloud模拟一个电商项目.分别有以下2个服务,商品.订单.下面我们开始叭 技术栈 S ...

  9. sock skbuf 结构:

    /** * struct sock - network layer representation of sockets * @__sk_common: shared layout with inet_ ...

  10. MFC的消息响应机制说明

    MFC的快速理解: 1.MFC的设计者们在设计MFC时,有一个主要的方向就是尽可能使得MFC的代码要小,速度尽可能快.为了这个方向,工程师们使用了许多技巧,主要表现在宏的运用上,实 现MFC的消息映射 ...