C.Increase and Copy #枚举

题目链接

题意

最初你有仅包含一个数字\(1\)的数组\(a\),一次操作中可对该数组进行两类操作:

  • 从数组中选择一个元素,将该元素\(+1\);
  • 从数组中选择一个元素,复制该元素放到原数组末端。

你需要在尽可能少的操作次数下,使得该数组所有元素值之和不小于\(n\)(\(n\leq 1e9\)),现要你求出最少操作次数

分析

显然,操作过程中,一定是先对最初元素不断自增,直到某个值后,再复制这个元素,即先进行第一类操作再进行第二类,这样能够保证操作次数尽可能少。

那么我们应该将最初元素加到多少才复制呢?我们可以枚举该元素可以增加\(i\),那么消耗次数为\(i-1\),那么接下来复制次数即为\(\lceil{\frac{n - i}{i}} \rceil\),故总消耗次数为\(i-1+\lceil{\frac{n - i}{i}} \rceil\)。枚举\(i\),找到\(i-1+\lceil{\frac{n - i}{i}} \rceil\)的最小值即可。另外,我们无需从\(1\)枚举到\(n\),枚举到\(\sqrt{n}\)即可。

#include <string>
#include <cstring>
#include <cstdio>
#include <iostream>
#include <stack>
#include <cmath>
#include <queue>
#include <map>
#include <vector>
#include <deque>
#include <algorithm>
#include <unordered_map>
using namespace std;
typedef long long ll;
const int MAXN = 15;
int q, n;
int main(){
scanf("%d", &q);
while(q--){
scanf("%d", &n);
int mymin = 0x3f3f3f3f;
for(int i = 1; i * i <= n; i++){
int sum = (i - 1) + (n - i) / i + ((n - i) % i != 0);
mymin = min(mymin, sum);
}
printf("%d\n", mymin);
}
return 0;
}

由官方题解思路,因为所求最值应该在\(\sqrt{n}\)的附近,我们枚举\([\lfloor \sqrt{n}\rfloor+5, \lfloor \sqrt{n}\rfloor-5]\)找最值,就能达到\(O(1)\)复杂度了。

D. Non-zero Segments #前缀和 #哈希表

题目链接

题意

给定长为\(n\)、包含正整数、也会包含负整数、但一定不包含\(0\)的数组\(a\),你需要在这个数组中某些位置插入任意值,保证该数组任意区间值之等于\(0\),现要你求出最少插入元素数量。

分析

设该数组前缀和\(sum_i\),我们知道,某个区间\([l, r]\)的值之和为\(0\),那么就意味着\(sum_r\)与\(sum_l\)是相等的。于是,我们便可通过哈希表去记录某个前缀和是否出现过,一旦出现过,假设从左到右遍历到\(i\),发现当前的前缀和\(sum_i\),在之前出现过,说明这一中间区间的权值之和一定为\(0\),那么按照题目要求,我们将某个值插入到\(i\)的前面,使得这一中间区间的权值之和不为0的同时,保证不会与后面区间相加为\(0\)(实际插入值无需真的确定下来),此时答案加\(1\)(当然,这只是个假想的插入操作,无需真的模拟,只需要将当前前缀和置为\(0\),从\(i\)开始重新计\(sum\)即可)。别忘了,每次迭代的过程中,要记录当前前缀和到哈希表中。另外预处理时,应将前缀和为\(0\)记录到哈希表,因为有可能相邻两元素恰好为相反数。

#include <string>
#include <cstring>
#include <cstdio>
#include <iostream>
#include <stack>
#include <cmath>
#include <queue>
#include <map>
#include <vector>
#include <deque>
#include <algorithm>
#include <unordered_map>
using namespace std;
typedef long long ll;
const int MAXN = 2e5+5;
unordered_map<ll, int> mymap;
int main(){
int n, ans = 0;
scanf("%d", &n);
ll sum = 0, cur;
mymap[0] = 1; //考虑到相邻元素恰为相反数
for(int i = 1; i <= n; i++){
scanf("%lld", &cur);
sum += cur;
if(mymap[sum] > 0){ //发现之前出现过该前缀和
mymap.clear();
mymap[0] = 1;
sum = cur; //前缀和清零(假想cur之前插入了一个数,保证前面区间不会与后面区间相加为0)
ans++;
}
mymap[sum]++;//记录该前缀和
}
printf("%d\n", ans);
return 0;
}

Codeforces Round #674 (Div. 3) C、D 题解的更多相关文章

  1. Codeforces Round #612 (Div. 2) 前四题题解

    这场比赛的出题人挺有意思,全部magic成了青色. 还有题目中的图片特别有趣. 晚上没打,开virtual contest打的,就会前三道,我太菜了. 最后看着题解补了第四道. 比赛传送门 A. An ...

  2. Codeforces Round #198 (Div. 2)A,B题解

    Codeforces Round #198 (Div. 2) 昨天看到奋斗群的群赛,好奇的去做了一下, 大概花了3个小时Ak,我大概可以退役了吧 那下面来稍微总结一下 A. The Wall Iahu ...

  3. Codeforces Round #672 (Div. 2) A - C1题解

    [Codeforces Round #672 (Div. 2) A - C1 ] 题目链接# A. Cubes Sorting 思路: " If Wheatley needs more th ...

  4. Codeforces Round #674 (Div. 3) F. Number of Subsequences 题解(dp)

    题目链接 题目大意 给你一个长为d只包含字符'a','b','c','?' 的字符串,?可以变成a,b,c字符,假如有x个?字符,那么有\(3^x\)个字符串,求所有字符串种子序列包含多少个abc子序 ...

  5. Codeforces Round #614 (Div. 2) A-E简要题解

    链接:https://codeforces.com/contest/1293 A. ConneR and the A.R.C. Markland-N 题意:略 思路:上下枚举1000次扫一遍,比较一下 ...

  6. Codeforces Round #610 (Div. 2) A-E简要题解

    contest链接: https://codeforces.com/contest/1282 A. Temporarily unavailable 题意: 给一个区间L,R通有网络,有个点x,在x+r ...

  7. Codeforces Round #611 (Div. 3) A-F简要题解

    contest链接:https://codeforces.com/contest/1283 A. Minutes Before the New Year 题意:给一个当前时间,输出离第二天差多少分钟 ...

  8. Codeforces Round #499 (Div. 2) D. Rocket题解

    题目: http://codeforces.com/contest/1011/problem/D This is an interactive problem. Natasha is going to ...

  9. Codeforces Round #499 (Div. 2) C Fly题解

    题目 http://codeforces.com/contest/1011/problem/C Natasha is going to fly on a rocket to Mars and retu ...

随机推荐

  1. java前后端开发需掌握的框架及技术

    一.Java开发 1.J2EE架构及主流框架,spring4.spring boot.spring MVC.spring Security.spring cloud.struct2.hibernate ...

  2. error:docker-ce conflicts with 2:docker-1.13.1-74.git6e3bb8e.el7.centos.x86_64

    问题原因:安装docker之前有安装cockpit-docker服务 解决方法:卸载docker-ce [root@localhost ~]# yum list installed | grep do ...

  3. 排名靠前的几个JS框架发展趋势和前景

    转载请注明出处:葡萄城官网,葡萄城为开发者提供专业的开发工具.解决方案和服务,赋能开发者.原文出处:https://blog.bitsrc.io/top-5-javascript-frameworks ...

  4. java多线程实现TCP网络Socket编程(C/S通信)

    目录 开篇必知必会 一.多线程技术 二.实现多线程接收 1.单线程版本 2.多线程版本 三.多线程与进程的关系 四.客户端界面完整代码 五.多线程通信对比 最后 开篇必知必会 在前一篇<Java ...

  5. 基于Vue.js PC桌面端弹出框组件|vue自定义弹层组件|vue模态框

    vue.js构建的轻量级PC网页端交互式弹层组件VLayer. 前段时间有分享过一个vue移动端弹窗组件,今天给大家分享一个最近开发的vue pc端弹出层组件. VLayer 一款集Alert.Dia ...

  6. JavaWeb项目问题记录

    模板 [遇到的问题] [时间] [原因] [解决方案] [排查思路及方式] 思路: 1) 2) [遇到的问题] 品优购项目中运营商页面查询广告信息是,无法正常查询,错误如下: Failed to lo ...

  7. CO函数库

    CO函数库 用于 Generator 函数的自动执行,co函数返回一个promise对象 Generator 函数: 协程的概念:A执行- A暂停,执行权给B--- B交回执行权--- A恢复执行 G ...

  8. ubuntu 18.04 安装anaconda

    ubuntu 安装anaconda 4版本 为了学习 tensorflow python3.5 版本 使用anaconda 安装: https://mirrors.tuna.tsinghua.edu. ...

  9. tcp 接收被动关闭 fin

    void tcp_rcv_established(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th, unsigned int ...

  10. ip rule 策略路由

    1. 工具安装 yum install iproute 查看工具是否安装 ip -V 2. ip rule 和 ip route ip命令中和策略路由相关的OBJECT有 rule 和 route. ...