ClickHouse源码笔记3:函数调用的向量化实现
分享一下笔者研读ClickHouse源码时分析函数调用的实现,重点在于分析Clickhouse查询层实现的接口,以及Clickhouse是如何利用这些接口更好的实现向量化的。本文的源码分析基于ClickHouse v19.16.2.2的版本。
1.举个栗子
下面是一个简单的SQL语句
SELECT a, abs(b) FROM test
这里调用一个abs的函数,我们先打开ClickHouse的Debug日志看一下执行计划。(当前ClickHouse不支持使用Explain语句来查看执行计划,这个确实是很蛋疼的~~)

这里分为了3个流
- ExpressionBlockInputStream: 最顶层的Expression,实现了Projection,这个和我们今天主题无关,本质上就是实现一个简单列的改名操作。比如
select a as aaa from test这里将列名从a改为aaa. - ExpressionBlockInputStream: 第二个ExpressionBlockInputStream就是我们关注的重点的,后面的章节会详细的剖析它。它主要完成了下面两件事情
- 对
b列执行函数abs,生成新的一列数据abs(b)
- 对
remove column b, 将b列删除。新的Block为a, abs(b)
- TinyLogBlockInputStream: 存储引擎的读取流,这里标识了底层表的存储引擎为
append only的TinyLog。
从上面的执行计划可以看出,Clickhouse的表达式计算是由ExpressionBlockInputStream来完成的,而这个类是一个很强大的类,可以实现:Projection, Join, Apply_Function, Add Column, Remove Column等。
2. 实现流程的梳理
- ExpressionBlockInputSteam readImpl()的实现
直接上代码,看一下ExpressionBlockInputStream的读取方法的实现
Block ExpressionBlockInputStream::readImpl()
{
Block res = children.back()->read();
if (res)
expression->execute(res);
return res;
}
这里的实现很简单,就是不停从底层的流读取数据Block,Block可以理解为Doris之中的Batch,相当一组数据,然后在Block之上执行表达式计算,之后返回给上节点。所以这里的重点就在于表达式计算的实现类ExpressionActions的指针expression,它封装了一组表达式的Action,在Block上依次执行这些Action。
- Action excute的实现
Action支持多种操作,包含了:
enum Type {
ADD_COLUMN,
REMOVE_COLUMN,
COPY_COLUMN,
APPLY_FUNCTION,
ARRAY_JOIN,
JOIN,
PROJECT,
ADD_ALIASES,
};
这里我们重点关注的是函数执行的实现,可以直接定位到APPLY_FUNCTION的代码:
case APPLY_FUNCTION:
{
1. 从Block之中筛选出对应的参数数组
ColumnNumbers arguments(argument_names.size());
for (size_t i = 0; i < argument_names.size(); ++i)
{
arguments[i] = block.getPositionByName(argument_names[i]);
}
2.新建一个结果的列,对应函数的结果会写入结果列,把结果列写入的Block之中
size_t num_columns_without_result = block.columns();
block.insert({ nullptr, result_type, result_name});
3.调用对应的函数指针,执行函数调用
function->execute(block, arguments, num_columns_without_result, input_rows_count, dry_run);
这里我保留一部分关键的执行路径代码,并添加了对应的中文注释。
选出了函数执行的参数,并添加了新的一个空列用于存储函数abs(b)的最终结果,新的列的偏移量就是num_columns_without_result指定的。

接下来这里我们这里重点关注Function的execute接口的参数就可以了:
- block:实际存储的数据
- arguments:列的参数偏移量
- num_columns_without_result:函数计算结果的写入列
- input_rows_count: block之中的数据行数
这里本质上是调用了接口IFunction的接口,它的子类需要实现对应的excuteImpl的方法:
class IFunction : public std::enable_shared_from_this<IFunction>,
public FunctionBuilderImpl, public IFunctionBase, public PreparedFunctionImpl
{
public:
/// TODO: make const
void executeImpl(Block & block, const ColumnNumbers & arguments, size_t result, size_t input_rows_count) override = 0;
而最终的实现是IFunction的子类:FunctionUnaryArithmetic实现了该方法,该方法的核心代码如下:
if (auto col = checkAndGetColumn<ColumnVector<T0>>(block.getByPosition(arguments[0]).column.get()))
{
auto col_res = ColumnVector<typename Op<T0>::ResultType>::create();
auto & vec_res = col_res->getData();
vec_res.resize(col->getData().size());
UnaryOperationImpl<T0, Op<T0>>::vector(col->getData(), vec_res);
block.getByPosition(result).column = std::move(col_res);
return true;
}
这里最为核心的是,将arguments的列作为参数列取出为变量col, 而col_res创建了个新的列,存放result的结果。这里最重要的方法就是
UnaryOperationImpl<T0, Op<T0>>::vector,从名字上也能看出,它实现了函数的向量化计算,我们继续看这部分代码:
static void NO_INLINE vector(const ArrayA & a, ArrayC & c)
{
size_t size = a.size();
for (size_t i = 0; i < size; ++i)
c[i] = Op::apply(a[i]);
}
显然,这就是一个完美的向量化优化代码,没有任何if, switch, break的分支跳转语句,for循环的长度也是已知的。这里的Op::apply就是咱们调用的AbsImpl::apply函数的实现:
template <typename A>
struct AbsImpl
{
static inline NO_SANITIZE_UNDEFINED ResultType apply(A a)
{
if constexpr (IsDecimalNumber<A>)
return a < 0 ? A(-a) : a;
else if constexpr (std::is_integral_v<A> && std::is_signed_v<A>)
return a < 0 ? static_cast<ResultType>(~a) + 1 : a;
else if constexpr (std::is_integral_v<A> && std::is_unsigned_v<A>)
return static_cast<ResultType>(a);
else if constexpr (std::is_floating_point_v<A>)
return static_cast<ResultType>(std::abs(a));
}
走的这里,相当于走完了整个函数调用的流程。而其他多参数的函数的实现也是大同小异,如:
struct BinaryOperationImplBase
{
using ResultType = ResultType_;
static void NO_INLINE vector_vector(const PaddedPODArray<A> & a, const PaddedPODArray<B> & b, PaddedPODArray<ResultType> & c)
{
size_t size = a.size();
for (size_t i = 0; i < size; ++i)
c[i] = Op::template apply<ResultType>(a[i], b[i]);
}
而执行完成abs(b)函数之后,b列就没有用处了,Clickhouse会调用另一个Action:REMOVE_COLUM在Block之中删除b列,这样就得到了我们所需要的两个列a, abs(b)组成的新的Block。

3.要点梳理
第二小节梳理完成了一整个函数调用的流程,这里重点梳理一下实现向量化函数调要点:
- ClickHouse的计算是纯粹函数式编程式的计算,不会改变原先的列状态,而是产生一组新的列。
- 各个函数的实现需要继承IFunction的接口,实现
execute的方法,该方法基于Block进行执行。 - 最终继承IFunction接口的实现类都需要override的
execute方法,并真正实现对应的函数vectoer的调用,这里Clickhouse确保了For循环的长度是已知的,同时没有对应跳转语句,确保了编译器进行向量化优化时有足够的亲和度。(这里可以打开gcc的编译flag:-fopt-info-vec或者clang的编译选项:-Rpass=loop-vectorize来查看实际源代码的向量化情况)
4. 小结
好了,到这里也就把ClickHouse函数调用的代码梳理完了。
除了abs函数外,其他的函数的执行也是同样通过类似的方式依次来实现和处理的,源码阅读的步骤也可以参照笔者的分析流程来参考。
笔者是一个ClickHouse的初学者,对ClickHouse有兴趣的同学,欢迎多多指教,交流。
5. 参考资料
ClickHouse源码笔记3:函数调用的向量化实现的更多相关文章
- ClickHouse源码笔记5:聚合函数的源码再梳理
笔者在源码笔记1之中分析过ClickHouse的聚合函数的实现,但是对于各个接口函数的实际如何共同工作的源码,回头看并没有那么明晰,主要原因是没有结合Aggregator的类来一起分析聚合函数的是如果 ...
- ClickHouse源码笔记4:FilterBlockInputStream, 探寻where,having的实现
书接上文,本篇继续分享ClickHouse源码中一个重要的流,FilterBlockInputStream的实现,重点在于分析Clickhouse是如何在执行引擎实现向量化的Filter操作符,而利用 ...
- ClickHouse源码笔记1:聚合函数的实现
由于工作的需求,后续笔者工作需要和开源的OLAP数据库ClickHouse打交道.ClickHouse是Yandex在2016年6月15日开源了一个分析型数据库,以强悍的单机处理能力被称道. 笔者在实 ...
- ClickHouse源码笔记2:聚合流程的实现
上篇笔记讲到了聚合函数的实现并且带大家看了聚合函数是如何注册到ClickHouse之中的并被调用使用的.这篇笔记,笔者会续上上篇的内容,将剖析一把ClickHouse聚合流程的整体实现. 第二篇文章, ...
- ClickHouse源码笔记6:探究列式存储系统的排序
分析完成了聚合以及向量化过滤,向量化的函数计算之后.本篇,笔者将分析数据库的一个重要算子:排序.让我们从源码的角度来剖析ClickHouse作为列式存储系统是如何实现排序的. 本系列文章的源码分析基于 ...
- clickhouse源码Redhat系列机单机版安装踩坑笔记
前情概要 由于工作需要用到clickhouse, 这里暂不介绍概念,应用场景,谷歌,百度一大把. 将安装过程踩下的坑记录下来备用 ClickHouse源码 git clone安装(直接下载源码包安装失 ...
- redis源码笔记(一) —— 从redis的启动到command的分发
本作品采用知识共享署名 4.0 国际许可协议进行许可.转载联系作者并保留声明头部与原文链接https://luzeshu.com/blog/redis1 本博客同步在http://www.cnblog ...
- Zepto源码笔记(一)
最近在研究Zepto的源码,这是第一篇分析,欢迎大家继续关注,第一次写源码笔记,希望大家多指点指点,第一篇文章由于首次分析原因不会有太多干货,希望后面的文章能成为各位大大心目中的干货. Zepto是一 ...
- AsyncTask源码笔记
AsyncTask源码笔记 AsyncTask在注释中建议只用来做短时间的异步操作,也就是只有几秒的操作:如果是长时间的操作,建议还是使用java.util.concurrent包中的工具类,例如Ex ...
随机推荐
- telnet | ping
ping通常是用来检查网络是否通畅或者网络连接速度的命令. ping www.baidu.com 而telnet是用来探测指定ip是否开放指定端口的. telnet xxx 443 查看443开放没 ...
- js截取+全部替换+字符串
//将关键字标志显示到页面中 function showKeyWord(showStr) { var keyword = $("#keyword").val();//页面中的关键字 ...
- 34.vsftpd服务程序--虚拟用户模式
1.创建用于进行FTP 认证的用户数据库文件,其中奇数行为账户名,偶数行为密码. [root@localhost ~]# cd /etc/vsftpd/ [root@localhost vsftpd] ...
- 算法-迪杰斯特拉算法(dijkstra)-最短路径
迪杰斯特拉算法(dijkstra)-最短路径 简介: 迪杰斯特拉算法是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法.是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中 ...
- Pytest(2)使用和调用方法
Pytest执行用例规则 Pytest在命令行中支持多种方式来运行和选择测试用例 1.对某个目录下所有的用例 pytest 2.对模块中进行测试 pytest test_mod.py 3.对文件夹进行 ...
- c++bind函数使用
总述 最近写代码的时候看到代码使用了bind,一个参数绑定的标准库函数.程序是这么写的, speaker_play_routine_ = new boost::thread (boost::b ...
- 2019牛客暑期多校训练营(第三场)A.Graph Games (分块)
题意:给你n个点 m条边的一张图 现在有q次操作 每次操作可以选择反转l~r的边号 也可以询问S(l)和S(r) 连接成的点集是否相同 思路:我们把m条边分块 用一个S数组维护每块对一个点的贡献 然后 ...
- 【bzoj 3232】圈地游戏(算法效率--01分数规划+图论--最小割)
题目:DZY家的后院有一块地,由N行M列的方格组成,格子内种的菜有一定的价值,并且每一条单位长度的格线有一定的费用.DZY喜欢在地里散步.他总是从任意一个格点出发,沿着格线行走直到回到出发点,且在行走 ...
- Codeforces Round #672 (Div. 2) D. Rescue Nibel! (思维,组合数)
题意:给你\(n\)个区间,从这\(n\)区间中选\(k\)个区间出来,要求这\(k\)个区间都要相交.问共有多少种情况. 题解:如果\(k\)个区间都要相交,最左边的区间和最右边的区间必须要相交,即 ...
- Kubernets二进制安装(12)之部署Node节点服务的kube-Proxy
kube-proxy是Kubernetes的核心组件,部署在每个Node节点上,它是实现Kubernetes Service的通信与负载均衡机制的重要组件; kube-proxy负责为Pod创建代理服 ...