剑指 Offer 14- I. 剪绳子 + 动态规划 + 数论
剑指 Offer 14- I. 剪绳子
题目链接
还是343. 整数拆分的官方题解写的更清楚
本题说的将绳子剪成m段,m是大于1的任意一个正整数,也就是必须剪这个绳子,至于剪成几段,每一段多长,才能使得乘积最大,这就是要求解的问题了
【解题思路1】动态规划
对于的正整数 n,当 n≥2 时,可以拆分成至少两个正整数的和。令 k 是拆分出的第一个正整数,则剩下的部分是 n−k,n−k 可以不继续拆分,或者继续拆分成至少两个正整数的和。由于每个正整数对应的最大乘积取决于比它小的正整数对应的最大乘积,因此可以使用动态规划求解。
- dp数组的含义: dp[i] 表示将正整数 i 拆分成至少两个正整数的和之后,这些正整数的最大乘积。
- 边界条件: 0 不是正整数,1 是最小的正整数,0 和 1 都不能拆分,因此 dp[0]=dp[1]=0。
状态转移方程:
当 i≥2 时,假设对正整数 i 拆分出的第一个正整数是 j(1≤j<i),则有以下两种方案:
- 将 i 拆分成 j 和 i−j 的和,且 i−j 不再拆分成多个正整数,此时的乘积是 \(j×(i−j)\);
- 将 i 拆分成 j 和 i−j 的和,且 i−j 继续拆分成多个正整数,此时的乘积是 \(j×dp[i−j]\)。
因此,当 j 固定时,有 \(dp[i]=max(j×(i−j),j×dp[i−j])\)。由于 j 的取值范围是 1 到 i−1,需要遍历所有的 j 得到 dp[i] 的最大值,因此可以得到状态转移方程如下:
\(dp[i]= \max_{1≤j<i} {(j×(i−j),j×dp[i−j])}\)
最终得到 dp[n] 的值即为将正整数 n 拆分成至少两个正整数的和之后,这些正整数的最大乘积。
class Solution {
public int cuttingRope(int n) {
int[] dp = new int[n + 1];
for (int i = 2; i <= n; i++) {
for (int j = 1; j < i; j++) {
dp[i]= Math.max(dp[i], Math.max(j * (i - j), j * dp[i - j]));
}
}
return dp[n];
}
}
【解题思路2】数学:函数极值
直觉上把数拆的越平均他们的积越大。拆分的整数越接近自然参数e,他们的乘积的越大。
数学证明:定义函数 f(x) 表示将给定的正整数 n 拆分成尽可能多的正数 x 的情况下的最大乘积,则可以将 n 分成 \(\frac{n}{x}\) 项,此时 \(f(x)=x^{\frac{n}{x}}\), 通过求导可得f(x)在x=e时取最大值,f(3)>f(2),x=3 时,可以得到最大乘积。
根据 n 除以 3 的余数进行分类讨论:
- 如果余数为 0,则将 n 拆分成 m 个 3;
- 如果余数为 1,因此将 n 拆分成 m-1 个 3 和 2 个 2;
- 如果余数为 2,则将 n 拆分成 m 个 3 和 1 个 2。
上述拆分的适用条件是 n≥4。如果 n≤3,则上述拆分不适用,需要单独处理
- 如果 n=2,则唯一的拆分方案是 2=1+1,最大乘积是 1×1=1;
- 如果 n=3,则拆分方案有 3=1+2=1+1+1,最大乘积对应方案 3=1+2,最大乘积是1×2=2
这两种情形可以合并为:当 n≤3 时,最大乘积是 n-1。
class Solution {
public int cuttingRope(int n) {
if (n <= 3) {
return n - 1;
}
int quotient = n / 3;
int remainder = n % 3;
if (remainder == 0) {
return (int) Math.pow(3, quotient);
} else if (remainder == 1) {
return (int) Math.pow(3, quotient - 1) * 4;
} else {
return (int) Math.pow(3, quotient) * 2;
}
}
}
剑指 Offer 14- I. 剪绳子 + 动态规划 + 数论的更多相关文章
- 【Python】剑指offer 14:剪绳子
题目:给你一根长度为n的绳子,请把绳子剪成m段 (m和n都是整数,n>1并且m>1)每段绳子的长度记为k[0],k[1],-,k[m].请问k[0]k[1]-*k[m]可能的最大乘积是多少 ...
- 剑指offer 面试题. 剪绳子
题目描述 给你一根长度为n的绳子,请把绳子剪成整数长的m段(m.n都是整数,n>1并且m>1),每段绳子的长度记为k[0],k[1],...,k[m].请问k[0]xk[1]x...xk[ ...
- 【Java】 剑指offer(14) 二进制中1的个数
本文参考自<剑指offer>一书,代码采用Java语言. 更多:<剑指Offer>Java实现合集 题目 请实现一个函数,输入一个整数,输出该数二进制表示中1的个数.例如把 ...
- 剑指Offer 14. 链表中倒数第k个结点 (链表)
题目描述 输入一个链表,输出该链表中倒数第k个结点. 题目地址 https://www.nowcoder.com/practice/529d3ae5a407492994ad2a246518148a?t ...
- [剑指offer] 14. 链表中倒数第K个节点+翻转+逆序打印+合并两个排序链表 + 链表相交(第一个公共节点) (链表)
题目描述 输入一个链表,输出该链表中倒数第k个结点. 思路: 两个指针,起始位置都是从链表头开始,第一个比第二个先走K个节点,当第一个走到链表尾时,第二个指针的位置就是倒数第k个节点.(两指针始终相 ...
- 剑指offer 14. 链表中倒数第 k 个结点
14. 链表中倒数第 k 个结点 题目描述 输入一个链表,输出该链表中倒数第k个结点 法一:快慢指针 快指针先走 k 步,等快指针到达尾部时,慢指针所指结点即是倒数第 k 个结点 public cla ...
- 剑指offer 14:链表中倒数第k个节点
题目描述 输入一个链表,输出该链表中倒数第k个结点. /* public class ListNode { int val; ListNode next = null; ListNode(int va ...
- 剑指offer(14)
题目: 操作给定的二叉树,将其变换为源二叉树的镜像. 思路: 这里有个细节,我们发现,6节点的子节点在操作之后并没有发生变化,所以等会我们在交换的时候,交换的不是节点的数值,而是整个节点. 另外我们进 ...
- 剑指offer 14 调整数组顺序使奇数位于偶数前面
牛客网上的题目还有一个额外的要求,就是不改变数组原始的前后数据,这种可以用队列来存储,或者把前后比较变为相邻的元素比较. 这个题目,主要要考察扩展性,用func函数就实现了扩展性.只需要改func函数 ...
随机推荐
- Paths on a Grid POJ - 1942 排列组合
题意: 从左下角移动到右上角.每次只能向上或者向右移动一格.问移动的轨迹形成的右半边图形有多少种 题解: 注意,这个图形就根本不会重复,那就是n*m的图形,向上移动n次,向右移动m次. 从左下角移动到 ...
- hdu2639 Bone Collector II
Problem Description The title of this problem is familiar,isn't it?yeah,if you had took part in the ...
- 洛谷 P3385 【模板】负环 (SPFA)
题意:有一个\(n\)个点的有向图,从\(1\)出发,问是否有负环. 题解:我们可以用SPFA来进行判断,在更新边的时候,同时更新路径的边数,因为假如有负环的话,SPFA这个过程一定会无限重复的遍历这 ...
- CF1478-A. Nezzar and Colorful Balls
CF1478-A. Nezzar and Colorful Balls 题意: 有\(n\)个球,每个球上面都有一个数字\(a_i\),这些数字是组成的序列是非递减的.现在你要给每个球涂色,你必须保证 ...
- 找工作面试题记录与参考资料(Golang/C++/计算机网络/操作系统/算法等)
记录下去年(2020年)找工作的面试题及参考资料. C++ 智能指针的实现原理 多态的实现原理[2] C++11/14/17新特性[3] 手写memcpy和memmove[4] 介绍下boost库 计 ...
- spark 一、编程指南
总览 第一.每个spark 应用都有一个驱动程序去运行着主函数和再每个节点上的并行操作. spark提供了一个RDD(弹性分布式数据集)的数据集合,可以通过不同的节点并行操作运算,可以通过hdfs文件 ...
- K8s Deployment YAML 名词解释
Deployment 简述 Deployment 为 Pod 和 ReplicaSet 提供了一个声明式定义 (declarative) 方法,用来替代以前的 ReplicationControlle ...
- OpenStack Train版-9.安装neutron网络服务(计算节点)
在计算节点安装neutron网络服务(computel01计算节点192.168.0.20)安装组件 yum install openstack-neutron-linuxbridge ebtable ...
- codeforces 5C
C. Longest Regular Bracket Sequence time limit per test 2 seconds memory limit per test 256 megabyte ...
- 2019牛客多校第一场I Points Division(DP)题解
题意: n个点,分成两组A,B,如果点i在A中,那么贡献值\(a_i\),反之为\(b_i\). 现要求任意\(i \in A,j \in B\)不存在 \(x_i >= x_j\) 且 \(y ...