https://www.luogu.org/problemnew/show/P1072(题目传送)

数学的推理在编程的体现越来越明显了。(本人嘀咕)

首先,我们知道这两个等式: (a0,x)=a1,[b0,x]=b1(a0,x)=a1,[b0,x]=b1

于是,我们可以设: x=a1*p,b1=x*tx=a1∗p,b1=x∗t

于是有: a1*p*t=b1a1∗p∗t=b1

所以我们令: b1/a1=sb1/a1=s

则: p*t=sp∗t=s

即: t=s/pt=s/p

又由最大公约数与最小公倍数的定义与性质可得:

(a0/a1,p)=1,(b1/b0,t)=1(a0/a1,p)=1,(b1/b0,t)=1

所以我们令: a0/a1=m,b1/b0=na0/a1=m,b1/b0=n

则有: (p,m)=1,(s/p,n)=1(p,m)=1,(s/p,n)=1

这就是第一个结论,我们称其为结论一。事实上,我们其实已经可以由结论一整理出可以AC的方法,即用sqrt(s)的复杂度枚举s的因数,然后将每个因数放到结论一中,看看是否成立,再统计所有符合结论一的因数的个数,然后输出即可。这种算法的复杂度是:O(sqrt(s)*log(s)*n)。这样其实也能卡过数据,但是还是没有达到理论上的通过。所以我们还要继续优化。

我们考虑(s/p,n)=1。如果s/p与n有相同质因数,则无法使(s/p,n)=1成立。于是,为了使(s/p,n)=1成立,我们可以将s与n所有相同的质因数从s中去掉(不动s/p的原因是s/p是s的因变量,改变无意义),得到剩余的数l,若(s/p,n)=1成立,s/p就必须是l的约数。

我们继续考虑(p,m)=1。因为s/p是l的约数,那么p就一定可以表示为这样的形式:

p=(s/l)*r(因为s/p*r=p,r属于N*

即:p一定是s/l的倍数(因为s/p是l的约数),r也是l的约数。于是就又有:

r|l,且(r,m)=1

这就是第二个结论,我们称其为结论二。而解决结论二的方法便很明显了。我们可以用与解决结论一相似的方法,将l与m所有相同的质因数从l中去掉,得到剩余的数q。那么所有使结论二成立的r都是q的因数了。然后,我们可以用sqrt(q)的复杂度枚举q的所有因数,输出q的因数个数就行了。这样,复杂度便降到了:O((sqrt(s)+log(s))*n),从理论来说也不会超时了。

还有一点需要注意,那就是特判没有符合要求的x的情况。这种情况出现只有四种可能:

1、s不为整数

2、m不为整数

3、n不为整数

4、(s/l,m)≠1,即因为p是s/l的倍数,所以无论r取何值,都会有(p,m)≠1

加上这四个特判,这道题便做完了。(来个总结公式:结论成立=筛去必要条件的不足+必要条件,这也算是一种思路吧)

AC代码:

 #include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<string>
using namespace std;
int ssqrt;
int cf(int a,int b)//去掉a中与b共有的质因数。思想:将b质因数分解,同时将a中与b共有的质因数去掉。
{
ssqrt=sqrt(b);
for(int i=;i<=ssqrt;i++)//sqrt(b)复杂度质因数分解b
{
if(b%i==)while(a%i==)a/=i;//去掉a中与b共有的质因数,将a分解
while(b%i==)b/=i;//将b质因数分解
}
if(b!=)while(a%b==)a/=b;//注意:此时b可能还不是1,因为b可能有比sqrt(b)更大的质因数,但至多只有一个,且它的次幂至多是1。所以如果b不是1,那就只能是一个质数。于是此时继续分解a。
return a;//返回剩下的a
}
int gcd(int a,int b){return b==?a:gcd(b,a%b);}//辗转相除求最大公约数
int main()
{
int a0,a1,b0,b1;
int gs;
int m,n,s,l,q;
scanf("%d",&gs);
int cnt;
while(gs--)
{
scanf("%d%d%d%d",&a0,&a1,&b0,&b1);
if(a0%a1|b1%b0|b1%a1){printf("0\n");continue;}//如果m、n、s中有小数,则直接输出0。这里的代码用到了一些位运算
m=a0/a1,n=b1/b0,s=b1/a1;l=cf(s,n);//求出m、n、s,然后求出l
if(gcd(max(s/l,m),min(s/l,m))!=){printf("0\n");continue;}//如果不互质,则直接输出0
q=cf(l,m);cnt=,ssqrt=sqrt(q);//求出q,开始枚举q的因数,求出q的因数个数
for(int i=;i<=ssqrt;i++)if(q%i==)cnt+=i==q/i?:;//这里注意,如果i==q/i,则只加1,否则加2
printf("%d\n",cnt);//输出
}
return ;

另附应用结论一的代码(好像更快。。。估计上面代码cf函数拖时间了吧):

 #include<cstdio>
using namespace std;
int gcd(int a,int b) {
return b==?a:gcd(b,a%b);
}
int main() {
int T;
scanf("%d",&T);
while(T--) {
int a0,a1,b0,b1;
scanf("%d%d%d%d",&a0,&a1,&b0,&b1);
int p=a0/a1,q=b1/b0,ans=;
for(int x=1;x*x<=b1;x++) //精华
if(b1%x==){
if(x%a1==&&gcd(x/a1,p)==&&gcd(q,b1/x)==) ans++;
int y=b1/x;//得到另一个因子
if(x==y) continue;
if(y%a1==&&gcd(y/a1,p)==&&gcd(q,b1/y)==) ans++;
}
printf("%d\n",ans);
}
return ;
}

做题在纸上推理推理写写思路,更清晰地解题


给看到这里的OIer一个小干货吧(虽然很可能知道,但也是试了好久才总结出来的啊):cmd的窗口默认保存297行,宽80字符,高25字符

洛谷P1072 Hankson 的趣味题(题解)的更多相关文章

  1. 洛谷 P1072 Hankson 的趣味题 题解

    题面 提前知识:gcd(a/d,b/d)*d=gcd(a,b); lcm(a,b)=a*b/gcd(a,b); 那么可以比较轻松的算出:gcd(x/a1,a0/a1)==gcd(b1/b0,b1/x) ...

  2. 洛谷 P1072 Hankson 的趣味题 解题报告

    P1072 \(Hankson\)的趣味题 题目大意:已知有\(n\)组\(a0,a1,b0,b1\),求满足\((x,a0)=a1\),\([x,b0]=b1\)的\(x\)的个数. 数据范围:\( ...

  3. 洛谷P1072 Hankson 的趣味题

    P1072 Hankson 的趣味题 题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson.现在,刚刚放学回家的 Hankson 正在思考一 ...

  4. Java实现洛谷 P1072 Hankson 的趣味题

    P1072 Hankson 的趣味题 输入输出样例 输入 2 41 1 96 288 95 1 37 1776 输出 6 2 PS: 通过辗转相除法的推导 import java.util.*; cl ...

  5. 【题解】洛谷P1072 Hankson的趣味题 (gcd和lcm的应用)

    洛谷P1072:https://www.luogu.org/problemnew/show/P1072 思路 gcd(x,a0)=a1 lcm(x,b0)=b1→b0*x=b1*gcd(x,b0) ( ...

  6. 洛谷 P1072 Hankson 的趣味题

    题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson.现 在,刚刚放学回家的 Hankson 正在思考一个有趣的问题. 今天在课堂上,老师讲 ...

  7. [NOIP2009] 提高组 洛谷P1072 Hankson 的趣味题

    题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson.现 在,刚刚放学回家的 Hankson 正在思考一个有趣的问题. 今天在课堂上,老师讲 ...

  8. 洛谷P1072 Hankson的趣味题

    这是个NOIP原题... 题意: 给定 a b c d 求 gcd(a, x) = b && lcm(c, x) = d 的x的个数. 可以发现一个朴素算法是从b到d枚举,期望得分50 ...

  9. 洛谷 - P1072 Hankson - 的趣味题 - 质因数分解

    https://www.luogu.org/problemnew/show/P1072 一开始看了一看居然还想放弃了的. 把 \(x,a_0,a_1,b_0,b_1\) 质因数分解. 例如 \(x=p ...

随机推荐

  1. [Web][高中同学毕业分布去向网站+服务器上挂载]二、敲定思路与方向(HTML5+JS(JQuery+ECharts))

    高中同学毕业分布网站:敲定思路 一.背景 第一集:http://www.cnblogs.com/Twobox/p/8368121.html 中大体确定了自己的 大体目标.大体思路. 但是 . 在今天的 ...

  2. (二)版本控制管理器之CVS(上)

    在前一篇<(一)版本控制管理器之发展史>的介绍中,有提到古典时期的CVS,那什么是CVS?CVS特点是什么?怎么个用法?等一系列的问题,虽然这个版本控制管理器早已过时,但大家了解下也不妨, ...

  3. Istio入门实战与架构原理——使用Docker Compose搭建Service Mesh

    本文将介绍如何使用Docker Compose搭建Istio.Istio号称支持多种平台(不仅仅Kubernetes).然而,官网上非基于Kubernetes的教程仿佛不是亲儿子,写得非常随便,不仅缺 ...

  4. python3 dict(字典)

    clear(清空字典内容) stu = { 'num1':'Tom', 'num2':'Lucy', 'num3':'Sam', } print(stu.clear()) #输出:None copy( ...

  5. docker compose 服务启动顺序控制

    概要 docker-compose 可以方便组合多个 docker 容器服务, 但是, 当容器服务之间存在依赖关系时, docker-compose 并不能保证服务的启动顺序. docker-comp ...

  6. Log4j分级别存储日志到数据库

    首先先创建三张表,按照自己的需求创建 <?xml version="1.0" encoding="UTF-8" ?> <!DOCTYPE lo ...

  7. Vector与ArrayList区别

    1)Vector的方法都是同步的(Synchronized),是线程安全的: ArrayList的方法是线程不安全的. 由于线程同步必然会影响性能,因此,ArrayList的性能比Vector好. 请 ...

  8. Python开发【内置模块篇】configparser

    生成配置文件 import configparser config = configparser.ConfigParser() config[', 'Compression': 'yes', ', ' ...

  9. APACHE SPARK 2.0 API IMPROVEMENTS: RDD, DATAFRAME, DATASET AND SQL

    What’s New, What’s Changed and How to get Started. Are you ready for Apache Spark 2.0? If you are ju ...

  10. Koa 框架介绍

    Node.js 是一个异步的世界,官方 API 支持的都是 callback 形式的异步编程模型,这 会带来许多问题,例如:callback 嵌套问题 ,异步函数中可能同步调用 callback 返回 ...