import codecs  #主题模型
from gensim import corpora
from gensim.models import LdaModel
from gensim import models
from gensim.corpora import Dictionary
te = []
fp = codecs.open('input.txt','r')
for line in fp:
line = line.split(',')
te.append([ w for w in line ])
print ('输入文本数量:',len(te))
dictionary = corpora.Dictionary(te)
corpus = [ dictionary.doc2bow(text) for text in te ]
tfidf = models.TfidfModel(corpus)
corpus_tfidf = tfidf[corpus]
print(list(corpus_tfidf))#输出词的tfidf
print(list(corpus))#输出文本向量空间
lda = LdaModel(corpus=corpus, id2word=dictionary, num_topics=20,passes=100)
doc_topic = [a for a in lda[corpus]]
topics_r = lda.print_topics(num_topics = 20, num_words =20)
topic_name = codecs.open('topics_result3.txt','w')
for v in topics_r:
topic_name.write(str(v)+'\n')
fp2 = codecs.open('documents_result.txt','w')
for t in doc_topic:
c = []
c.append([a[1] for a in t])
print(t)
m = max(c[0]) for i in range(0, len(t)):
if m in t[i]:
#print(t[i])
fp2.write(str(t[i][0]) + ' ' + str(t[i][1]) + '\n')#输出模型类和概览
break

python3 LDA主题模型以及TFIDF实现的更多相关文章

  1. Gensim LDA主题模型实验

    本文利用gensim进行LDA主题模型实验,第一部分是基于前文的wiki语料,第二部分是基于Sogou新闻语料. 1. 基于wiki语料的LDA实验 上一文得到了wiki纯文本已分词语料 wiki.z ...

  2. 用scikit-learn学习LDA主题模型

    在LDA模型原理篇我们总结了LDA主题模型的原理,这里我们就从应用的角度来使用scikit-learn来学习LDA主题模型.除了scikit-learn,  还有spark MLlib和gensim库 ...

  3. 机器学习入门-文本特征-使用LDA主题模型构造标签 1.LatentDirichletAllocation(LDA用于构建主题模型) 2.LDA.components(输出各个词向量的权重值)

    函数说明 1.LDA(n_topics, max_iters, random_state)  用于构建LDA主题模型,将文本分成不同的主题 参数说明:n_topics 表示分为多少个主题, max_i ...

  4. [综] Latent Dirichlet Allocation(LDA)主题模型算法

    多项分布 http://szjc.math168.com/book/ebookdetail.aspx?cateid=1&&sectionid=983 二项分布和多项分布 http:// ...

  5. R语言︱LDA主题模型——最优主题数选取(topicmodels)+LDAvis可视化(lda+LDAvis)

    每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:在自己学LDA主题模型时候,发现该模 ...

  6. Spark:聚类算法之LDA主题模型算法

    http://blog.csdn.net/pipisorry/article/details/52912179 Spark上实现LDA原理 LDA主题模型算法 [主题模型TopicModel:隐含狄利 ...

  7. R语言︱LDA主题模型——最优主题...

    R语言︱LDA主题模型——最优主题...:https://blog.csdn.net/sinat_26917383/article/details/51547298#comments

  8. 自然语言处理之LDA主题模型

    1.LDA概述 在机器学习领域,LDA是两个常用模型的简称:线性判别分析(Linear Discriminant Analysis)和 隐含狄利克雷分布(Latent Dirichlet Alloca ...

  9. 理解 LDA 主题模型

    前言 gamma函数 0 整体把握LDA 1 gamma函数 beta分布 1 beta分布 2 Beta-Binomial 共轭 3 共轭先验分布 4 从beta分布推广到Dirichlet 分布 ...

随机推荐

  1. 容器技术研究-Kubernetes基本概念

    最近在研究容器技术,作为入门,基本概念必须搞明白,今天整理一下Kubernetes的基本概念. 一.什么是Kubernetes Kubernetes(k8s)是自动化容器操作的开源平台,这些操作包括部 ...

  2. python format()用法

    转自 https://www.cnblogs.com/gide/p/6955895.html python2.6开始,新增了一种格式化字符串的函数str.format(),此函数可以快速处理各种字符串 ...

  3. [dart学习]第三篇:dart变量介绍 (二)

    本篇继续介绍dart变量类型,可参考前文:第二篇:dart变量介绍 (一) (一)final和const类型 如果你不打算修改一个变量的值,那么就把它定义为final或const类型.其中:final ...

  4. 4.JAVA基础复习——JAVA中的构造函数与this关键字

    构造函数:构建创造对象时调用的函数 特点: 1.函数名与类名相同. 2.不用定义返回值类型. 3.没有具体的返回值. public class Demo { private int age; priv ...

  5. springboot整合JPA(简单整理,待续---)

    整合步骤 引入依赖: <dependencies> <dependency> <groupId>org.springframework.boot</group ...

  6. python中的列表

    1.  列表是什么,他可以用来做什么呢?当你存在这样的疑问,就往下看吧:) 列表是由一系列按特定顺序排列的元素组成的.在Python中,用[]来表示列表,并用逗号来分隔其中的元素. 我们可以创建包含字 ...

  7. Java7/8 中的 HashMap 和 ConcurrentHashMap 全解析

    Java7/8 中的 HashMap 和 ConcurrentHashMap 全解析 今天发一篇”水文”,可能很多读者都会表示不理解,不过我想把它作为并发序列文章中不可缺少的一块来介绍.本来以为花不了 ...

  8. SQL表的自身关联

    SQL表的自身关联 有如下两个数据表: tprt表,组合基本信息表,每个组合有对应的投管人和托管人: tmanager表,管理人信息表,管理人类别由o_type区分: 具体表信息如下所示: tprt表 ...

  9. 浅谈Vue之双向绑定

    VUE实现双向数据绑定的原理就是利用了 Object.defineProperty() 这个方法重新定义了对象获取属性值(get)和设置属性值(set)的操作来实现的.那么Object.defineP ...

  10. objectarx 把当前图形输出

    方法1: AcDbDatabase *pdb; acdbCurDwg()->wblock(pdb); pdb->saveAs(str); pdb->closeInput(true); ...