考虑拆位,计算每一个二进制位的贡献。

问题转化为求一个01矩阵的全0/1的子矩形个数。

考虑计算以第i行第j列为右下角的合法子矩形个数。

发现合法的左上角范围向左是单调下降的。

可以用一个单调栈来维护合法的范围。

这样做总复杂度O(n^2logn)

#include<bits/stdc++.h>
#define N 2200
#define eps 1e-7
#define inf 1e9+7
#define db double
#define ll long long
#define ldb long double
using namespace std;
inline int read()
{
char ch=0;
int x=0,flag=1;
while(!isdigit(ch)){ch=getchar();if(ch=='-')flag=-1;}
while(isdigit(ch)){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}
return x*flag;
}
const int mo=1e9+7;
int n,f[N],w[N],st[N],s[N][N];
int work1()
{
int res=0;
for(int o=0;o<=31;o++)
{
int ans=0;
for(int i=1;i<=n;i++)f[i]=0;
for(int x=1;x<=n;x++)
{
for(int i=1;i<=n;i++)f[i]=((1<<o)&s[x][i])?f[i]+1:0;
for(int i=1,top=0;i<=n;i++)
{
while(top&&f[st[top]]>f[i])top--;
st[++top]=i;w[top]=(w[top-1]+(1ll*(st[top]-st[top-1])*f[i]%mo))%mo;
ans=(ans+w[top])%mo;
}
}
res=(res+(1ll*(1<<o)*ans%mo))%mo;
}
return (res%mo+mo)%mo;
}
int work2()
{
int res=0;
for(int o=0;o<=31;o++)
{
int ans=0;
for(int i=1;i<=n;i++)f[i]=0;
for(int x=1;x<=n;x++)
{
for(int i=1;i<=n;i++)f[i]=(!((1<<o)&s[x][i]))?f[i]+1:0;
for(int i=1,top=0;i<=n;i++)
{
while(top&&f[st[top]]>f[i])top--;
st[++top]=i;w[top]=(w[top-1]+(1ll*(st[top]-st[top-1])*f[i]%mo))%mo;
ans=(ans+w[top])%mo;
}
}
ans=((1ll*(n*(n+1)/2)*(n*(n+1)/2)%mo)-ans)%mo;
res=(res+(1ll*(1<<o)*ans%mo))%mo;
}
return (res%mo+mo)%mo;
}
int main()
{
n=read();
for(int i=1;i<=n;i++)for(int j=1;j<=n;j++)s[i][j]=read();
printf("%d %d",work1(),work2());
return 0;
}

[GXOI/GZOI2019]与或和的更多相关文章

  1. 【BZOJ5505】[GXOI/GZOI2019]逼死强迫症(矩阵快速幂)

    [BZOJ5505][GXOI/GZOI2019]逼死强迫症(矩阵快速幂) 题面 BZOJ 洛谷 题解 如果没有那两个\(1*1\)的东西,答案就是斐波那契数,可以简单的用\(dp\)得到. 大概是设 ...

  2. [LOJ3087][GXOI/GZOI2019]旅行者——堆优化dijkstra

    题目链接: [GXOI/GZOI2019]旅行者 我们考虑每条边的贡献,对每个点求出能到达它的最近的感兴趣的城市(设为$f[i]$,最短距离设为$a[i]$)和它能到达的离它最近的感兴趣的城市(设为$ ...

  3. [LOJ3088][GXOI/GZOI2019]旧词——树链剖分+线段树

    题目链接: [GXOI/GZOI2019]旧词 对于$k=1$的情况,可以参见[LNOI2014]LCA,将询问离线然后从$1$号点开始对这个点到根的路径链修改,每次询问就是对询问点到根路径链查询即可 ...

  4. [LOJ3086][GXOI/GZOI2019]逼死强迫症——递推+矩阵乘法

    题目链接: [GXOI/GZOI2019]逼死强迫症 设$f[i][j]$表示前$i$列有$j$个$1*1$的格子的方案数,那么可以列出递推式子: $f[i][0]=f[i-1][0]+f[i-2][ ...

  5. [LOJ3084][GXOI/GZOI2019]宝牌一大堆——DP

    题目链接: [GXOI/GZOI2019]宝牌一大堆 求最大值容易想到$DP$,但如果将$7$种和牌都考虑进来的话,$DP$状态不好设,我们将比较特殊的七小对和国士无双单独求,其他的进行$DP$. 观 ...

  6. P5305 [GXOI/GZOI2019]旧词

    题目地址:P5305 [GXOI/GZOI2019]旧词 这里是官方题解 \[\sum_{i \leq x}^{}\ depth(lca(i,y))^k\] \(k = 1\) 求的是 \(\sum_ ...

  7. P5304 [GXOI/GZOI2019]旅行者

    题目地址:P5304 [GXOI/GZOI2019]旅行者 这里是官方题解 一个图 \(n\) 点 \(m\) 条边,里面有 \(k\) 个特殊点,问这 \(k\) 个点之间两两最短路的最小值是多少? ...

  8. P5303 [GXOI/GZOI2019]逼死强迫症

    题目地址:P5303 [GXOI/GZOI2019]逼死强迫症 这里是官方题解 初步分析 从题目和数据范围很容易看出来这是一个递推 + 矩阵快速幂,那么主要问题在于递推的过程. 满足条件的答案一定是以 ...

  9. P5302 [GXOI/GZOI2019]特技飞行

    题目地址:P5302 [GXOI/GZOI2019]特技飞行 这里是官方题解(by lydrainbowcat) 题意 给 \(10^5\) 条直线,给 \(x = st\) 和 \(x = ed\) ...

  10. P5301 [GXOI/GZOI2019]宝牌一大堆

    题目地址:P5301 [GXOI/GZOI2019]宝牌一大堆 这里是官方题解(by lydrainbowcat) 部分分 直接搜索可以得到暴力分,因为所有和牌方案一共只有一千万左右,稍微优化一下数据 ...

随机推荐

  1. 爬取豆瓣电影影评,生成wordcloud词云,并利用监督学习根据评论自动打星

    本文的完整源码在git位置:https://github.com/OceanBBBBbb/douban-ml 爬取豆瓣影评 爬豆瓣的影评比较简单,豆瓣没有做限制,甚至你都不用登陆就可以看全部,我这里用 ...

  2. office全系列激活脚本-改良版.cmd

    @ECHO OFFTITLE office 全版本系统激活@echo offfor /l %%a in (8,1,16) do (for /f "tokens=*" %%i in ...

  3. tab切换的效果——仿照今日头条APP的切换效果

    说点废话;不知道是哪一版本起头条的tab切换效果就变了,一直琢磨着这个事,去度娘那里也没有什么结果:正好这两天有空就尝试做了一下:用前端的技术来实现: 先看效果吧:上面的tab随着slide滑动,上面 ...

  4. 网站https证书SSL证书相关

    网站https证书SSL证书相关 二级域名可以申请证书来使用,主域名申请的单域名证书,二级域名不在https加密保护内,通配符证书可以保护主域名下所有的二级子域名,二级域名等于和主域名使用的同一张证书 ...

  5. go语言开发教程之web项目开发实战

    Golang介绍Go语言是谷歌推出的一种全新的编程语言,可以在不损失应用程序性能的情况下降低代码的复杂性.谷歌首席软件工程师罗布派克(Rob Pike)说:我们之所以开发Go,是因为过去10多年间软件 ...

  6. MySQL相关问题题

    1.truncate.delete.drop的区别 (1)truncate.drop是不可以rollback的,但是delete是可以rollback的.DELETE语句执行删除的过程是每次从表中删除 ...

  7. 简易轮播图、内含定时器。熟练JS操作

    HTML部分: <!DOCTYPE html><html lang="en"><head> <meta charset="UTF ...

  8. Qt文档阅读笔记-QGraphicsItem::paint中QStyleOptionGraphicsItem *option的进一步认识

    官方解析 painter : 此参数用于绘图;option : 提供了item的风格,比如item的状态,曝光度以及详细的信息:widget : 想画到哪个widget上,如果要画在缓存区上,这个参数 ...

  9. nodejs-使用multer实现多张图片上传,express搭建脚手架

    nodejs-使用multer实现多张图片上传,express搭建脚手架 在工作中,我们经常会看到用户有多张图片上传,并且预览展示的需求.那么在具体实现中又该怎么做呢? 本实例需要nodejs基础,本 ...

  10. 某大公司的sql面试题

    问:关系模式:User(userId, userName), Article(articleId, userId, title,   content),Vote(articleId, score),U ...