一、新建一个maven项目

二、pom.xml 中内容

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion> <groupId>1</groupId>
<artifactId>1</artifactId>
<version>1.0-SNAPSHOT</version> <repositories>
<repository>
<id>apache</id>
<url>http://maven.apache.org</url>
</repository>
</repositories> <dependencies>
<!--<dependency>-->
<!--<groupId>org.apache.hadoop</groupId>-->
<!--<artifactId>hadoop-core</artifactId>-->
<!--<version>2.7.2</version>-->
<!--</dependency>-->
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>2.7.2</version>
</dependency> <dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-hdfs</artifactId>
<version>2.7.2</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>2.7.2</version>
</dependency> <dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.1</version>
<scope>test</scope>
</dependency>
</dependencies> <build>
<plugins>
<plugin>
<artifactId>maven-dependency-plugin</artifactId>
<configuration>
<excludeTransitive>false</excludeTransitive>
<stripVersion>true</stripVersion>
<outputDirectory>./lib</outputDirectory>
</configuration> </plugin>
</plugins>
</build>
</project>

三、准备数据文件

注意点:因为Windows当前用户是 Administrator ,所以需要在 hdfs://master:8020/user/ 目录下创建文件夹 Administrator ,以后进行本地测试都使用此文件夹。

文件夹创建好之后,还需要给与写的权限。此处直接给最大权限。

su hdfs
hdfs dfs -mkdir -p /user/Administrator/input
hdfs dfs -chmod -R 777 /user/Administrator
hdfs dfs -put ./wordCountData.txt /user/Administrator/input
exit

四、创建 WordCount.java 文件
注意点: 因为是在 Windows 上提交 mapreduce 任务,需要在 conf 中设置下面内容。
  conf.set("mapreduce.app-submission.cross-platform", "true"); // 跨平台,保证在 Windows 下可以提交 mr job

否则报错:/bin/bash: line 0: fg: no job control

package com.zjc.mr;

import java.io.IOException;
import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class WordCount { public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable> { // 下面的IntWritable 跟 Text 类是hadoop内部类,相当于 java 中的 int 与 String
// MapReduce 程序中互相传递的是这种类型的参数
private final static IntWritable one = new IntWritable(1);
private Text word = new Text(); public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());//java 自带的字符串分割函数
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
/*
*eg map output:
* hello 1
* word 1
* hello 1
* hadoop 1
*/
}
}
} /*
* Reduce 输入:
* key: hello
* value: [1,1]
*
* Hadoop负责将Map产生的<key,value>处理成{具有相同key的value集合},传给Reducer
输入:<key,(listof values)>
输出:<key,value>
reduce函数(必须是这个名字)的参数,(输入key,输入具有相同key的value集合,Context)其中,
输入的key,value必须类型与map的输出<key,value>相同,这一点适用于map,reduce类及函数
*
*/
public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable result = new IntWritable(); public void reduce(Text key, Iterable<IntWritable> values, Context context)
throws IOException, InterruptedException {
int sum = 0;
System.out.println("-----------------------------------------");
System.out.println("key: "+key);
for (IntWritable val : values) {
System.out.println("val: "+val);
sum += val.get();
}
result.set(sum);
System.out.println("result: "+result.toString());
context.write(key, result);
}
} public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
conf.set("mapreduce.app-submission.cross-platform", "true"); // 跨平台,保证在 Windows 下可以提交 mr job
Job job = Job.getInstance(conf, "word count"); // 任务名
job.setJarByClass(WordCount.class); // 指定Class
job.setMapperClass(TokenizerMapper.class); // 指定 Mapper Class
job.setCombinerClass(IntSumReducer.class); // 指定 Combiner Class,与 reduce 计算逻辑一样
job.setReducerClass(IntSumReducer.class); // 指定Reucer Class
job.setOutputKeyClass(Text.class); // 指定输出的KEY的格式
job.setOutputValueClass(IntWritable.class); // 指定输出的VALUE的格式
job.setNumReduceTasks(1); //设置Reducer 个数默认1
// Mapper<Object, Text, Text, IntWritable> 输出格式必须与继承类的后两个输出类型一致
String args_0 = "hdfs://master:8020/user/Administrator/input";
String args_1 = "hdfs://master:8020/user/Administrator/output";
FileInputFormat.addInputPath(job, new Path(args_0)); // 输入路径
FileOutputFormat.setOutputPath(job, new Path(args_1)); // 输出路径
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
// 每次运行都需要先删除hdfs中,上一次执行生成的 output 文件夹。 hdfs dfs -rm -R /user/Administrator/output

五、查看结果

在 IDEA中运行 WordCount的更多相关文章

  1. Spark学习笔记——在远程机器中运行WordCount

    1.通过realy机器登录relay-shell ssh XXX@XXX 2.登录了跳板机之后,连接可以用的机器 XXXX.bj 3.在本地的idea生成好程序的jar包(word-count_2.1 ...

  2. CDH quick start VM 中运行wordcount例子

    需要注意的事情: 1. 对于wordcount1.0 ,按照http://www.cloudera.com/content/cloudera/en/documentation/HadoopTutori ...

  3. 在eclipse中运行wordcount,控制台打印log4j警告

    log4j:WARN No appenders could be found for logger (org.apache.hadoop.util.Shell).log4j:WARN Please i ...

  4. Hadoop3 在eclipse中访问hadoop并运行WordCount实例

    前言:       毕业两年了,之前的工作一直没有接触过大数据的东西,对hadoop等比较陌生,所以最近开始学习了.对于我这样第一次学的人,过程还是充满了很多疑惑和不解的,不过我采取的策略是还是先让环 ...

  5. (二)Hadoop例子——运行example中的wordCount例子

    Hadoop例子——运行example中的wordCount例子 一.   需求说明 单词计数是最简单也是最能体现MapReduce思想的程序之一,可以称为 MapReduce版"Hello ...

  6. 021_在Eclipse Indigo中安装插件hadoop-eclipse-plugin-1.2.1.jar,直接运行wordcount程序

    1.工具介绍 Eclipse Idigo.JDK1.7-32bit.hadoop1.2.1.hadoop-eclipse-plugin-1.2.1.jar(自己网上下载) 2.插件安装步骤 1)将ha ...

  7. Spark源码编译并在YARN上运行WordCount实例

    在学习一门新语言时,想必我们都是"Hello World"程序开始,类似地,分布式计算框架的一个典型实例就是WordCount程序,接触过Hadoop的人肯定都知道用MapRedu ...

  8. eclipse运行WordCount

    1) 可以完全参考http://www.cnblogs.com/archimedes/p/4539751.html在eclipse下创建MapReduce工程,创建了MR工程,并完成WordCount ...

  9. 解决在windows的eclipse上面运行WordCount程序出现的一系列问题详解

    一.简介 要在Windows下的 Eclipse上调试Hadoop2代码,所以我们在windows下的Eclipse配置hadoop-eclipse-plugin- 2.6.0.jar插件,并在运行H ...

随机推荐

  1. 虹软免费人脸识别SDK注册指南

    成为开发者三步完成账号的基本注册与认证:STEP1:点击注册虹软AI开放平台右上角注册选项,完成注册流程.STEP2:首次使用,登录后进入开发者中心,点击账号管理完成企业或者个人认证,若未进行实名认证 ...

  2. MyDAL - .QueryOneAsync() 使用

    索引: 目录索引 一.API 列表 .QueryOneAsync() .QueryOneAsync<M>() 如: .QueryOneAsync<Agent>() , 用于 单 ...

  3. SQL Server数据库文件与文件组总结

    文件和文件组概念 关于文件与文件组,简单概括如下,详情请参考官方文档"数据库文件和文件组Database Files and Filegroups"或更多相关资料: 数据文件概念: ...

  4. 获取OlapConnection连接

    目录: 1.获取org.olap4j.OlapConnection对象 2.获取mondrian.olap.Connection对象 一.org.olap4j.OlapConnection对象 说明: ...

  5. firewalld简介及功能

    1. firewalld简介 firewalld是CentOS7/Red Hat7的一大特性,最大的好处有两个: 第一个支持动态更新,不用重启服务: 第二个就是加入了防火墙的zone概念 firewa ...

  6. Mysql语句删除主键的自增

    ALTER TABLE 表名MODIFY COLUMN 字段名 int(2) NOT NULL FIRST ;

  7. Jenkins + Ansible + Gitlab之gitlab篇

    前言 持续交付 版本控制器:Gitlab.GitHub 持续集成工具:jenkins 部署工具:ansible  课程安排 Gitlab搭建与流程使用 Ansible环境配置与Playbook编写规范 ...

  8. CentOS7 安装配置 MySQL 5.7

    1. 下载 yum 源文件 mysql80-community-release-el7-2.noarch.rpm https://dev.mysql.com/downloads/repo/yum/ 2 ...

  9. C#中的out 参数,ref参数,值参数

    大家可能在编码中或多或少的使用过out的ref,但是是否注意过他两的详细用法以及区别? 本文想介绍下详细介绍下out参数,ref参数以及一般值参数. 值参数 在使用参数时,把一个值传递给函数使用的一个 ...

  10. django开发新手教程(原创)

    为了帮助新手简单高效解决django开发的问题,从而写了这么一篇,随便转载! 本人用的是windows10操作系统 #联网安装 ==指定版本号      我在自定义的www文件夹安装C:\Users\ ...