<题目链接>

题目大意:

作为一个城市的应急救援队伍的负责人,你有一张特殊的全国地图。在地图上显示有多个分散的城市和一些连接城市的快速道路。每个城市的救援队数量和每一条连接两个城市的快速道路长度都标在地图上。当其他城市有紧急求助电话给你的时候,你的任务是带领你的救援队尽快赶往事发地,同时,一路上召集尽可能多的救援队。

输入格式:

输入第一行给出4个正整数N、M、S、D,其中N(2)是城市的个数,顺便假设城市的编号为0~(N-1);M是快速道路的条数;S是出发地的城市编号;D是目的地的城市编号。

第二行给出N个正整数,其中第i个数是第i个城市的救援队的数目,数字间以空格分隔。随后的M行中,每行给出一条快速道路的信息,分别是:城市1、城市2、快速道路的长度,中间用空格分开,数字均为整数且不超过500。输入保证救援可行且最优解唯一。

输出格式:
第一行输出最短路径的条数能够召集的最多的救援队数量。第二行输出从S到D的路径中经过的城市编号。数字间以空格分隔,输出结尾不能有多余空格。

解题分析:

由于本题在保证路径最短的情况下,还要使路径上的点权和最大,所以我们在最短路的松弛过程中,优先松弛路径,如果最短路径相同,再考虑挑选点券和最大的路,并且,最短路的条数也能够在Dijkstra松弛的过程中维护。

#include <bits/stdc++.h>
using namespace std; const int N = ;
const int INF = 0x3f3f3f3f;
#define pb push_back
int n,m,st,ed;
struct Edge{ int to,val; };
vector<Edge>G[N];
int path[N],vis[N],num[N]; struct Node{
int loc,dist,mxval,cnt;
Node(int _loc=,int _dist=,int _mxval=,int _cnt=):loc(_loc),dist(_dist),mxval(_mxval),cnt(_cnt){}
bool operator < (const Node &tmp)const{
return dist>tmp.dist;
}
}node[N]; void Dij(){
memset(path,-,sizeof(path));
for(int i=;i<n;i++){
vis[i]=,node[i]=Node(i,INF,,);
}
priority_queue<Node>q;
node[st]=Node(st,,num[st],);
q.push(node[st]);
while(!q.empty()){
int u=q.top().loc;q.pop();
if(vis[u])continue;
vis[u]=;
for(int i=;i<G[u].size();i++){
int v=G[u][i].to,cost=G[u][i].val;
if(node[v].dist>node[u].dist+cost){
node[v].dist=node[u].dist+cost;
path[v]=u; //记录上一个点
node[v].cnt=node[u].cnt; //更新这个点的最短路条数
node[v].mxval=node[u].mxval+num[v]; //记录以这个点为终点的最短路的点权和
q.push(node[v]);
}else if(node[v].dist==node[u].dist+cost){
node[v].cnt+=node[u].cnt; //因为有多条最短路径,所以这里将之前的最短路径条数加起来
if(node[v].mxval<node[u].mxval+num[v]){ //更新最短路径上的点权最小值
node[v].mxval=node[u].mxval+num[v];
path[v]=u;
}
}
}
}
} void Print(int u){ //递归打印路径
if(u==st){
printf("%d",st);return;
}
Print(path[u]);
printf(" %d",u);
} int main(){
scanf("%d%d%d%d",&n,&m,&st,&ed);
for(int i=;i<n;i++)scanf("%d",&num[i]);
for(int i=;i<m;i++){
int u,v,w;scanf("%d%d%d",&u,&v,&w);
G[u].pb(Edge{v,w});
G[v].pb(Edge{u,w});
}
Dij();
printf("%d %d\n",node[ed].cnt,node[ed].mxval);
Print(ed);puts("");
return ;
}

PTA L2-001 紧急救援 (带权最短路)的更多相关文章

  1. 51nod1459 带权最短路

    1459 迷宫游戏 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 你来到一个迷宫前.该迷宫由若干个房间组成,每个房间都有一个得分,第一次进入这个房间,你就可以得到这个分 ...

  2. 51nod1459(带权值的dijkstra)

    题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1459 题意:中文题诶- 思路:带权值的最短路,这道题数据也没 ...

  3. hdu5045:带权二分图匹配

    题目大意 : n个人 做m道题,其中 每连续的n道必须由不同的人做 已知第i人做出第j题的概率为pij,求最大期望 思路:考虑每连续的n道题 都要n个人来做,显然想到了带权的二分图匹配 然后就是套模板 ...

  4. BZOJ.4500.矩阵(差分约束 SPFA判负环 / 带权并查集)

    BZOJ 差分约束: 我是谁,差分约束是啥,这是哪 太真实了= = 插个广告:这里有差分约束详解. 记\(r_i\)为第\(i\)行整体加了多少的权值,\(c_i\)为第\(i\)列整体加了多少权值, ...

  5. Codeforces.739E.Gosha is hunting(DP 带权二分)

    题目链接 \(Description\) 有\(n\)只精灵,两种精灵球(高级和低级),每种球能捕捉到第\(i\)只精灵的概率已知.求用\(A\)个低级球和\(B\)个高级球能捕捉到精灵数的最大期望. ...

  6. BZOJ_4609_[Wf2016]Branch Assignment_决策单调性+带权二分

    BZOJ_4609_[Wf2016]Branch Assignment_决策单调性+带权二分 Description 要完成一个由s个子项目组成的项目,给b(b>=s)个部门分配,从而把b个部门 ...

  7. Hdu 2047 Zjnu Stadium(带权并查集)

    Zjnu Stadium Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total ...

  8. POJ 1703 Find them, Catch them(带权并查集)

    传送门 Find them, Catch them Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 42463   Accep ...

  9. Java数据结构——带权图

    带权图的最小生成树--Prim算法和Kruskal算法 带权图的最短路径算法--Dijkstra算法 package graph; // path.java // demonstrates short ...

随机推荐

  1. 省市区JSON

    行政编码 ViewBag.CssLinks = ""; 行政编码 中国和韩国行政编码选择.数据来自json文件,但在前端通过json对象调用. 注意本地方式,是将json文件作为对 ...

  2. JavaWeb之商品查看后历史记录代码实现

    JavaWeb之商品查看后历史记录代码实现全过程解析. 历史记录思路图: 假设已经访问了商品 :1-2-3 那么历史记录就是1-2-3,如果访问了商品8,那么历史记录就是:8-1-2-3,如果再次访问 ...

  3. CF757E Bash Plays with Functions

    题解 q<=1e6,询问非常多.而n,r也很大,必须要预处理所有的答案,询问的时候,能比较快速地查询. 离线也是没有什么意义的,因为必须递推. 先翻译$f_0(n)$ $f_0(n)=\sum_ ...

  4. usb描述符简述(二)

    title: usb描述符简述 tags: linux date: 2018/12/18/ 18:25:23 toc: true --- usb描述符简述 转载自cnblog 具体描述符 https: ...

  5. 关于ddl(新增字段)对数据库锁表|读写操作的影响_资料

    1.对一个表执行ddl(新增字段)会不会阻塞表,影响读写? 在一次项目升级之前需要执行一个新增字段的脚本(alter table...),表的数据量是260多万,执行时间是72秒,感觉略长,不知道会不 ...

  6. Moving Average

    移动平均算法Demo #!/usr/bin/python2.7 # Fetch data from BD and analyse. import json import urllib import t ...

  7. Spring Boot集成MyBatis的2种方式

    目录 写在前面 准备工作 配置数据库驱动 配置数据源 原生集成MyBatis 依赖配置 注册MyBatis核心组件 定义并使用映射器 通过MyBatis-Spring-Boot-Starter集成 默 ...

  8. Coroutine的原理以及实现

    最近在写WinForm,在UI界面需要用到异步的操作,比如加载数据的同时刷系进度条,WinForm提供了不少多线程的操作, 但是多线程里,无法直接修改主线程里添加的UI的get/set属性访问器(可以 ...

  9. Vue项目中使用基于Vue.js的移动组件库cube-ui

    cube-ui 是滴滴公司的技术团队基于 Vue.js 实现的精致移动端组件库.很赞,基本场景是够用了,感谢开源!感谢默默奉献的你们. 刚爬完坑,就来总结啦!!希望对需要的朋友有小小的帮助. (一)创 ...

  10. win10免安装版本的MySQL的下载安装和配置

    下载mysql-xxx.zip(免安装版) 解压到自己想要的目录下(我的是D:\mysql\),打开mysql-5.7.21-winx64文件夹,新建my.ini文件,输入: [mysql] # 设置 ...