BZOJ

洛谷

这里写的不错,虽然基本还是自己看转移...


每个点的贡献都是\(1\),所以直接求每个点通电的概率\(F_i\),答案就是\(\sum F_i\)。

把\(F_x\)分成:父节点通电给\(x\)带来的概率\(g_x\),和\(x\)及其子树通电给\(x\)带来的概率\(f_x\)。

对于两个独立的事件\(A,B\),由概率加法公式,\(P(A+B)=P(A)+P(B)-P(A)P(B)\),\(F_x=f_x+g_x-f_xg_x\)。

令\(p_x\)表示\(x\)本身通电的概率,\(p_{(x,v)}\)表示边\((x,v)\)通电的概率,那么\(f_x=p_x+\sum_{v\in son[x]}f_vp_{(x,v)}\)。注意这里的加法是概率的加法(相加再减去同时发生的概率)。

\(g_x\)的转移,就是\(F_{fa}\)减去\(x\)转移到\(fa\)的概率。因为\(P(A)=\frac{P(A+B)-P(B)}{1-P(B)}\),所以除去\(x\)的贡献外\(fa\)通电的概率\(q=\frac{F_{fa}-f_xp_{(fa,x)}}{1-f_xp_{(fa,x)}}\),所以\(g_x=q\times p_{(fa,x)}\)。

然后就做完啦。

ps:其实不是很懂第二次DFS,\(P(B)=1\)的时候(除\(0\))\(P(A)\)应该等于多少...

然而数据水?并不会出现\(P(B)=1\)的情况。

另一种DP方式:

还可以令\(F_x\)表示\(x\)不通电的概率,\(F_x=f_xg_x\)。那么只考虑子树的贡献,记\(h_v\)表示\(v\)给父节点贡献的概率,即\(h_v=f_v+(1-f_v)(1-p_{(x,v)})\),有\(f_x=(1-p_x)\prod h_v\)。

再考虑父节点的贡献\(g_x\),同样考虑直接减掉\(x\)对\(fa\)的贡献,即\(g_x=\frac{F_{fa}}{h_x}\)(注意特判\(h_x=0\)的情况)。

同样两次DP就OK啦。

调了半年原来是边权没开double...


代码写的第一种DP。

//38344kb	3684ms
#include <cmath>
#include <cstdio>
#include <cctype>
#include <algorithm>
#define eps 1e-10
//#define gc() getchar()
#define MAXIN 500000
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
typedef long long LL;
const int N=5e5+5; int Enum,H[N],nxt[N<<1],to[N<<1];
double f[N],F[N],pe[N<<1];
char IN[MAXIN],*SS=IN,*TT=IN; inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-48,c=gc());
return now;
}
inline void AE(int w,int v,int u)
{
to[++Enum]=v, nxt[Enum]=H[u], H[u]=Enum, pe[Enum]=1.0*w/100;
to[++Enum]=u, nxt[Enum]=H[v], H[v]=Enum, pe[Enum]=pe[Enum-1];
}
void DFS1(int x,int fa)
{
double b;
for(int i=H[x],v; i; i=nxt[i])
if((v=to[i])!=fa)
DFS1(v,x), b=f[v]*pe[i], f[x]=f[x]+b-f[x]*b;
}
void DFS2(int x,int fa)
{
for(int i=H[x],v; i; i=nxt[i])
if((v=to[i])!=fa)
{
double b=f[v]*pe[i];
if(fabs(1-b)<eps) F[v]=1;//=1怎么考虑的啊...网上都这么写的=-=
else
{
double q=(F[x]-b)/(1-b)*pe[i];
F[v]=f[v]+q-f[v]*q;
}
DFS2(v,x);
}
} int main()
{
const int n=read();
for(int i=1; i<n; ++i) AE(read(),read(),read());
for(int i=1; i<=n; ++i) f[i]=1.0*read()/100;
DFS1(1,1), F[1]=f[1], DFS2(1,1);
double ans=0;
for(int i=1; i<=n; ++i) ans+=F[i];
printf("%.6f\n",ans); return 0;
}

BZOJ.3566.[SHOI2014]概率充电器(概率DP 树形DP)的更多相关文章

  1. [BZOJ3566][SHOI2014]概率充电器 换根树形DP

    链接 题意:n个充电元件形成一棵树,每个点和每条边都有各自的充电概率,元件可以自身充电或者通过其他点和边间接充电,求充电状态元件的期望个数 题解 设1为根节点 设 \(f[x]\) 表示 \(x\) ...

  2. BZOJ 3566: [SHOI2014]概率充电器 [树形DP 概率]

    3566: [SHOI2014]概率充电器 题意:一棵树,每个点\(q[i]\)的概率直接充电,每条边\(p[i]\)的概率导电,电可以沿边传递使其他点间接充电.求进入充电状态的点期望个数 糖教题解传 ...

  3. 洛谷 P4284 [SHOI2014]概率充电器 概率与期望+换根DP

    洛谷 P4284 [SHOI2014]概率充电器 概率与期望+换根DP 题目描述 著名的电子产品品牌\(SHOI\) 刚刚发布了引领世界潮流的下一代电子产品-- 概率充电器: "采用全新纳米 ...

  4. BZOJ 3566: [SHOI2014]概率充电器( 树形dp )

    通过一次dfs求出dp(x)表示节点x考虑了x和x的子树都没成功充电的概率, dp(x) = (1-p[x])π(1 - (1-dp[son])*P(edge(x, son)).然后再dfs一次考虑节 ...

  5. bzoj 3566: [SHOI2014]概率充电器

    Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品--概率充电器:"采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决定!SHOI 概率 ...

  6. ●BZOJ 3566 [SHOI2014]概率充电器

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3566题解: 概率dp,树形dp 如果求出每个点被通电的概率t, 那么期望答案就是t1×1+t ...

  7. [BZOJ3566][SHOI2014]概率充电器(概率DP)

    题意:树上每个点有概率有电,每条边有概率导电,求每个点能被通到电的概率. 较为套路但不好想的概率DP. 树形DP肯定先只考虑子树,自然的想法是f[i]表示i在只考虑i子树时,能有电的概率,但发现无法转 ...

  8. [BZOJ 1907] 树的路径覆盖 【树形DP】

    题目链接:BZOJ - 1907 题目分析 使用树形 DP,f[x][0] 表示以 x 为根的子树不能与 x 的父亲连接的最小路径数(即 x 是一个折线的拐点). f[x][1] 表示以 x 为根的子 ...

  9. bzoj 4871: [Shoi2017]摧毁“树状图” [树形DP]

    4871: [Shoi2017]摧毁"树状图" 题意:一颗无向树,选两条边不重复的路径,删去选择的点和路径剩下一些cc,求最多cc数. update 5.1 : 刚刚发现bzoj上 ...

  10. BZOJ.4199.[NOI2015]品酒大会(后缀自动机 树形DP)

    BZOJ 洛谷 后缀数组做法. 洛谷上SAM比SA慢...BZOJ SAM却能快近一倍... 只考虑求极长相同子串,即所有后缀之间的LCP. 而后缀的LCP在后缀树的LCA处.同差异这道题,在每个点处 ...

随机推荐

  1. beam 的异常处理 Error Handling Elements in Apache Beam Pipelines

    Error Handling Elements in Apache Beam Pipelines Vallery LanceyFollow Mar 15 I have noticed a defici ...

  2. Linux下查看Nginx安装目录、版本号信息及当前运行的配置文件

    Linux环境下,怎么确定Nginx的安装路径 输入命令行: ps -ef | grep nginx 摁回车,将出现如下图片: master process 后面的就是的 /data/software ...

  3. wp系统笔记

    1.了解了justified-image-grid是wp插件,继而查看wp,wp是一个免费建站系统.内置主题和插件.博客,CMS,企业站等.php+mysql 环境至少5.0以上 2.在zh-word ...

  4. JS学习笔记Day12

    一.浏览器的默认行为以及阻止行为 (一)右键菜单事件:oncontextmenu: 阻止:return false: (二)超链接的默认行为:跳转: 阻止:标准浏览器:event.preventDef ...

  5. 解读Scrapy框架

    Scrapy框架基础:Twsited Scrapy内部基于事件循环的机制实现爬虫的并发.原来: url_list = ['http://www.baidu.com','http://www.baidu ...

  6. sublime text3格式化html,css,js代码

    需要安装HTML/CSS/JS prettify插件. 安装步骤:首选项 -> Package Control -> Install Package -> HTML-CSS-JS P ...

  7. BZOJ-2308 小z的袜子(莫队)

    题目链接 题意 $n$点$m$次询问区间内随机取两个数是相同数的概率 思路 莫队入门题,对询问按块排序后更新答案,复杂度$O(n\sqrt{n})$ 代码 //#pragma comment(link ...

  8. “字节跳动-文远知行杯”广东工业大学第十四届程序设计竞赛 1010 Count

    思路:矩阵快速幂.推一下初始矩阵就好了 #include<bits/stdc++.h> #define LL long long #define fi first #define se s ...

  9. C#利用Vini.cs操作INI文件

    VClassLib-CS项目Github地址:https://github.com/velscode/VClassLib-CS VINI文档地址:https://github.com/velscode ...

  10. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks(理解)

    0 - 背景 R-CNN中检测步骤分成很多步骤,fast-RCNN便基于此进行改进,将region proposals的特征提取融合成共享卷积层问题,但是,fast-RCNN仍然采用了selectiv ...