这一节依然是关于时间的知识, 在平时的工作中, 有一个非常令我们恼火的就是时间的格式可以有很多种表达, 比如下面这张图, 我们看到同样是 2017年1月5日, 可以有很多种时间的格式, 我们需要先将格式统一才能进行下面的工作, Pandas 提供了这个函数 to_datetime(). 

下面通过一个例子来看下它的具体用法:

import pandas as pd
dates = ['2017-01-05', 'Jan 5, 2017', '01/05/2017', '2017.01.05', '2017/01/05','20170105']
pd.to_datetime(dates)

输出:

DatetimeIndex(['2017-01-05', '2017-01-05', '2017-01-05', '2017-01-05',
'2017-01-05', '2017-01-05'],
dtype='datetime64[ns]', freq=None)

来看下加上时间的效果:

dates = ['2017-01-05 2:30:00 PM', 'Jan 5, 2017 14:30:00', '01/05/2016', '2017.01.05', '2017/01/05','20170105']
pd.to_datetime(dates)

输出:

DatetimeIndex(['2017-01-05 14:30:00', '2017-01-05 14:30:00',
'2016-01-05 00:00:00', '2017-01-05 00:00:00',
'2017-01-05 00:00:00', '2017-01-05 00:00:00'],
dtype='datetime64[ns]', freq=None)

如果时间的 list 里有无法转换的字符呢?

dates = ['2017-01-05 2:30:00 PM', 'Jan 5, 2017 14:30:00', '01/05/2016', '2017.01.05', '2017/01/05','20170105', 'ABC']
pd.to_datetime(dates)

报错了:

TypeError                                 Traceback (most recent call last)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/pandas/core/tools/datetimes.py in _convert_listlike(arg, box, format, name, tz)
376 try:
--> 377 values, tz = conversion.datetime_to_datetime64(arg)
378 return DatetimeIndex._simple_new(values, name=name, tz=tz) pandas/_libs/tslibs/conversion.pyx in pandas._libs.tslibs.conversion.datetime_to_datetime64() TypeError: Unrecognized value type: <class 'str'> During handling of the above exception, another exception occurred:

这种情况下, 我们需要给 to_datetime() 函数加个参数:

dates = ['2017-01-05 2:30:00 PM', 'Jan 5, 2017 14:30:00', '01/05/2016', '2017.01.05', '2017/01/05','20170105', 'ABC']
pd.to_datetime(dates, errors='ignore')

输出:

array(['2017-01-05 2:30:00 PM', 'Jan 5, 2017 14:30:00', '01/05/2016',
'2017.01.05', '2017/01/05', '20170105', 'ABC'], dtype=object)

非时间字符被原样输出了, 还可以设置第二个参数 errors='coerce':

pd.to_datetime(dates, errors='coerce')

输出:

DatetimeIndex(['2017-01-05 14:30:00', '2017-01-05 14:30:00',
'2016-01-05 00:00:00', '2017-01-05 00:00:00',
'2017-01-05 00:00:00', '2017-01-05 00:00:00',
'NaT'],
dtype='datetime64[ns]', freq=None)

我们知道关于时间的格式, 美国跟欧洲的格式是不一样的, 如下图所示:

如果以欧洲的时间格式表示 2019年1月5日, 应该会写成这样:

pd.to_datetime('5/1/2019')

但是默认输出是按照美国的标准:

Timestamp('2019-05-01 00:00:00')

这时, 可以加一个参数指明第一个值为 day:

pd.to_datetime('5/1/2019', dayfirst=True)

输出:

Timestamp('2019-01-05 00:00:00')

我们通常会用斜线作为年月日的分隔线, 但是其实这个分隔符是可以用任意字符代替的, 比如 $, 比如 #, 因为 Pandas 提供了一个参数 format 可以用来定义时间的表达格式, 比如下面的例子:

pd.to_datetime('5$1$2019', format='%d$%m$%Y')

输出:

Timestamp('2019-01-05 00:00:00')

用 # 做分隔符的例子:

pd.to_datetime('5#1#2019', format='%d#%m#%Y')

输出:

Timestamp('2019-01-05 00:00:00')

格林威治时间是从1970年1月1日开始累计的秒数的总和. 
我们可以通过下面这个网站获取时时的格林威治时间:
Epoch & Unix Timestamp Conversion Tools
可以用 to_datetime() 函数转换格林威治时间:

t = 1551966534
pd.to_datetime(t, unit='s')

输出:

Timestamp('2019-03-07 13:48:54')

以 list 的形式传参, 以得到 list 的时间格式:

t = 1551966534
dt = pd.to_datetime([t], unit='s')
dt

输出:

DatetimeIndex(['2019-03-07 13:48:54'], dtype='datetime64[ns]', freq=None)

通过 Pandas 的 view() 函数还可以将其再转换成格林威治时间:

dt.view('int64')

输出:

array([1551966534000000000])

以上, 就是关于 to_datetime() 函数的基本使用方法, enjoy~~~

Pandas 基础(17) - to_datetime的更多相关文章

  1. numpy&pandas基础

    numpy基础 import numpy as np 定义array In [156]: np.ones(3) Out[156]: array([1., 1., 1.]) In [157]: np.o ...

  2. 数据分析02 /pandas基础

    数据分析02 /pandas基础 目录 数据分析02 /pandas基础 1. pandas简介 2. Series 3. DataFrame 4. 总结: 1. pandas简介 numpy能够帮助 ...

  3. 利用Python进行数据分析(12) pandas基础: 数据合并

    pandas 提供了三种主要方法可以对数据进行合并: pandas.merge()方法:数据库风格的合并: pandas.concat()方法:轴向连接,即沿着一条轴将多个对象堆叠到一起: 实例方法c ...

  4. 利用Python进行数据分析(9) pandas基础: 汇总统计和计算

    pandas 对象拥有一些常用的数学和统计方法.   例如,sum() 方法,进行列小计:   sum() 方法传入 axis=1 指定为横向汇总,即行小计:   idxmax() 获取最大值对应的索 ...

  5. 利用Python进行数据分析(8) pandas基础: Series和DataFrame的基本操作

    一.reindex() 方法:重新索引 针对 Series   重新索引指的是根据index参数重新进行排序. 如果传入的索引值在数据里不存在,则不会报错,而是添加缺失值的新行. 不想用缺失值,可以用 ...

  6. 利用Python进行数据分析(7) pandas基础: Series和DataFrame的简单介绍

    一.pandas 是什么 pandas 是基于 NumPy 的一个 Python 数据分析包,主要目的是为了数据分析.它提供了大量高级的数据结构和对数据处理的方法. pandas 有两个主要的数据结构 ...

  7. [.net 面向对象编程基础] (17) 数组与集合

    [.net 面向对象编程基础] (17) 数组与集合 学习了前面的C#三大特性,及接口,抽象类这些相对抽象的东西以后,是不是有点很累的感觉.具体的东西总是容易理解,因此我们在介绍前面抽象概念的时候,总 ...

  8. Pandas基础学习与Spark Python初探

    摘要:pandas是一个强大的Python数据分析工具包,pandas的两个主要数据结构Series(一维)和DataFrame(二维)处理了金融,统计,社会中的绝大多数典型用例科学,以及许多工程领域 ...

  9. Pandas 基础(1) - 初识及安装 yupyter

    Hello, 大家好, 昨天说了我会再更新一个关于 Pandas 基础知识的教程, 这里就是啦......Pandas 被广泛应用于数据分析领域, 是一个很好的分析工具, 也是我们后面学习 machi ...

随机推荐

  1. js类型转换比较表格

    JavaScript类型转换表格  值 转换为         字符串 数字 布尔值 对象 undefined "undefined" NaN false throw TypeEr ...

  2. mac 安装robot framework报错:No matching distribution found for Pywin32

    运行  pip install robotframework-ride  ,出现以下错误 解决办法:修改Python的运行方式,需要32位的python运行 defaults write com.ap ...

  3. TerminateProcess实现关闭任意程序

    #include <Windows.h> #include <tchar.h> int WINAPI _tWinMain(HINSTANCE hInstance, HINSTA ...

  4. PHP----------linux下如何安装redis扩展。安装redis可以在我的博客redis里面寻找。

    1.扩展下载地址:wget https://github.com/phpredis/phpredis/archive/develop.zip 2.下载完了以后解压压缩包 解压以后切换到 cd phpr ...

  5. C#中类成员的执行顺序

    先进行细分: 类的成员分为:字段.属性.方法.构造方法 成员的修饰符:静态成员.实例成员 层次结构:父类.子类 先不考虑继承关系,执行顺序为: 静态字段静态构造方法实例字段实例构造方法属性和方法是在调 ...

  6. 接口自动化测试持续集成--Soapui接口功能测试持续集成

    Soapui接口功能测试持续集成,需要先安装好maven和jenkins,maven和jenkins安装和系统环境配置比较简单,在这里不做叙述.   1.Soapui保存的工程文件 soapui工程保 ...

  7. keil在线烧录突然提示 No target connected #

    keil在线烧录突然提示 No target connected 运行环境 IDE:keil uvsion5 微处理器:STM32F0xx 系列 烧录器:ST-LINK/V2 问题描述 烧录新程序并进 ...

  8. ASP.Net Core "The type initializer for 'Gdip' threw an exception"

    ASP.NET Core项目部署在Linux下可能会出现GDI错误 The type initializer for 'Gdip' threw an exception 解决方案:创建 libdl 的 ...

  9. 群晖IP地址更新问题

    系统:黑群晖  DS3615 事件:初始安装后 会自动获取一个IP地址,各项功能正常,由于网络调整,更换了路由,群晖宿主机链接到了二级路由(交换机模式) 问题: 1.使用原始的IP无法访问到群晖服务 ...

  10. 【Spark-SQL学习之二】 SparkSQL DataFrame创建和储存

    环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk1.8 scala-2.10.4(依赖jdk1.8) spark ...