写出在忽略粘性与热传导性, 即设 $\mu=\mu'=\kappa=0$ 的情况, 在 Euler 坐标系下具守恒律形式的一维反应流动力学方程组. 由此求出在解的强间断线上应满足的 R.H. 条件 (见第二章 $\S 4$), 并证明越过强间断线, 函数 $Z$ 保持连续.

解答:

(1)  具守恒律形式的一维反应流动力学方程组为 $$\beex \bea \cfrac{\p \rho}{\p t}+\cfrac{\p}{\p x}(\rho u)&=0,\\ \cfrac{\p}{\p t}(\rho u)+\cfrac{\p}{\p x}(\rho u^2+p)&=0,\\ \cfrac{\p}{\p t}\sex{\rho E+\cfrac{1}{2}\rho u^2} +\cfrac{\p}{\p x}\sez{\sex{\rho E+\cfrac{1}{2}\rho u^2+p}u} &=\rho Fu,\\ \cfrac{\p}{\p t}(\rho Z)+\cfrac{\p}{\p x}(\rho Z u)&=-\bar k(\rho,p,Z)Z. \eea \eeex$$

(2)  在解的强间断线 $x=x(t)$ 上的应满足的 R.H. 条件为 $$\bee\label{4_4_4_eq} \bea \sez{\rho}\cfrac{\rd x}{\rd t}&=[\rho u],\\ [\rho u]\cfrac{\rd x}{\rd t}&=[\rho u^2+p],\\ \sez{\rho E+\cfrac{1}{2}\rho u^2}\cfrac{\rd x}{\rd t}&=\sez{\sex{\rho E+\cfrac{1}{2}\rho u^2+p}u},\\ [\rho Z]\cfrac{\rd x}{\rd t}&=[\rho Z]. \eea \eee$$

(3)  证明 $Z$ 连续. 事实上, 由 $\eqref{4_4_4_eq}_1$ 知 $$\bex m=\rho_0\sex{u_0-\cfrac{\rd x}{\rd t}} =\rho_1\sex{u_1-\cfrac{\rd x}{\rd t}}. \eex$$ 又因为强间断, 而 $m\neq 0$. 再由 $\eqref{4_4_4_eq}_1$, $\eqref{4_4_4_eq}_4$ 知 $$\bex m(Z_1-Z_0)=0\ra Z_1=Z_0.  \eex$$

[物理学与PDEs]第4章习题4 一维理想反应流体力学方程组的守恒律形式及其 R.H. 条件的更多相关文章

  1. [物理学与PDEs]第4章习题3 一维理想反应流体力学方程组的数学结构

    证明: Euler 坐标系下的一维反应流体力学方程组 (3. 10)-(3. 13) 也是一个一阶拟线性双曲型方程组. 证明: 由 (3. 10), (3. 12), (3. 13) 知 $$\bex ...

  2. [物理学与PDEs]第3章习题5 一维理想磁流体力学方程组的数学结构

    试将一维理想磁流体力学方程组 (5. 10)-(5. 16) 化为一阶拟线性对称双曲组的形式. 解答: 由 (5. 12),(5. 16) 知 $$\beex \bea 0&=\cfrac{\ ...

  3. [物理学与PDEs]第2章习题10 一维理想流体力学方程组的 Lagrange 形式

    试证明: 一维理想流体力学方程组的 Lagrange 形式 (5. 22)-(5. 24) 也可写成如下形式 $$\beex \bea \cfrac{\p \tau}{\p t}-\cfrac{\p ...

  4. [物理学与PDEs]第4章习题参考解答

    [物理学与PDEs]第4章习题1 反应力学方程组形式的化约 - 动量方程与未燃流体质量平衡方程 [物理学与PDEs]第4章习题2 反应力学方程组形式的化约 - 能量守恒方程 [物理学与PDEs]第4章 ...

  5. [物理学与PDEs]第2章习题8 一维定常粘性不可压缩流体的求解

    考察固定在 $y=0$ 与 $y=1$ 处两个平板之间的定常粘性不可压缩流体沿 $x$ 方向的流动. 设 $p=p(x)$, 且已知 $p(0) =p_1$, $p(L)=p_2$, $p_1> ...

  6. [物理学与PDEs]第2章习题7 一维不可压理想流体的求解

    设有以 $x$ 轴为轴向的等轴截面管道, 其中充满着沿 $x$ 方向流动的不可压缩的理想流体, 在每一横截面上流体的状态相同, 且 $p=p(x)$. 若已知 $p(0) =p_1$, $p(L)=p ...

  7. [物理学与PDEs]第2章习题6 有旋的 Navier-Stokes 方程组

    试证明: 由 Navier-Stokes 方程组描述的流体运动一般总是有旋的, 即若 $\rot{\bf u}={\bf 0}$, 则 Navier-Stokes 方程组 (3. 4)-(3. 5) ...

  8. [物理学与PDEs]第3章习题参考解答

    [物理学与PDEs]第3章习题1 只有一个非零分量的磁场 [物理学与PDEs]第3章习题2 仅受重力作用的定常不可压流理想流体沿沿流线的一个守恒量 [物理学与PDEs]第3章习题3电磁场的矢势在 Lo ...

  9. [物理学与PDEs]第2章习题参考解答

    [物理学与PDEs]第2章习题1 无旋时的 Euler 方程 [物理学与PDEs]第2章习题2 质量力有势时的能量方程 [物理学与PDEs]第2章习题3 Laplace 方程的 Neumann 问题 ...

随机推荐

  1. Extjs 改变grid行的背景颜色

    ## Ext grid 改变行背景色 Ext.util.CSS.createStyleSheet('.ts {background:#9a9a9bc2;}');//单独创建css样式 { xtype: ...

  2. 1.2 NCE22 By heart

    Some plays are so successful that they run/are performed/ for years on end/successively/in a row/con ...

  3. SSRS----关于图表参考线(平均线)的添加

    在开发报表的时候,遇到了一个问题,客户需要在气泡图上添加水平和竖直两条平均线(结果参考如下图). 个人知识背景 一般添加参考线本身是有一个相关的设置的,但一般都是相对于Y值,即平行于X轴的.用类似的方 ...

  4. DRF项目创建流程(1)

    一 web应用模式 前后端不分离 前后端分离 二 RESTFUL API规范 REST全称是Representational State Transfer,中文意思是表述(编者注:通常译为表征)性状态 ...

  5. 【English】20190320

    valid有效的 [ˈvælɪd]  solitary独立的 [ˈsɑ:ləteri] data definition not valid unless solitary qualifying有资格的 ...

  6. KERBEROS PROTOCOL TUTORIAL

    KERBEROS PROTOCOL TUTORIAL   This tutorial was written by Fulvio Ricciardi and is reprinted here wit ...

  7. 20 python 初学(logging模块)

    学习网站:https://www.cnblogs.com/yuanchenqi/articles/5732581.html logging 模块: # _author: lily # _date: 2 ...

  8. Ubuntu 18.04安装MySQL指南

    前言 Ubuntu18.04想要安装MySQL,只能安装MySQL8.0版本.如果你直接 apt-get install mysql-server 安装,那么恭喜踩坑! 先给出彻底删除mysql5.x ...

  9. Linux内存管理 (23)一个内存Oops解析

    专题:Linux内存管理专题 关键词:DataAbort.fsr.pte.backtrace.stack.   在内存相关实际应用中,内存异常访问是一种常见的问题. 本文结合异常T32栈回溯.Oops ...

  10. C#帮助类:将List转换成Datatable

    public class ListToDatatable { public static DataTable ToDataTable <T> (List <T> items) ...