pkuseg:一个多领域中文分词工具包
pkuseg简单易用,支持细分领域分词,有效提升了分词准确度。
目录
主要亮点
pkuseg具有如下几个特点:
- 多领域分词。不同于以往的通用中文分词工具,此工具包同时致力于为不同领域的数据提供个性化的预训练模型。根据待分词文本的领域特点,用户可以自由地选择不同的模型。 我们目前支持了新闻领域,网络领域,医药领域,旅游领域,以及混合领域的分词预训练模型。在使用中,如果用户明确待分词的领域,可加载对应的模型进行分词。如果用户无法确定具体领域,推荐使用在混合领域上训练的通用模型。各领域分词样例可参考 example.txt。
- 更高的分词准确率。相比于其他的分词工具包,当使用相同的训练数据和测试数据,pkuseg可以取得更高的分词准确率。
- 支持用户自训练模型。支持用户使用全新的标注数据进行训练。
- 支持词性标注。
编译和安装
- 目前仅支持python3
- 新版本发布:2019-1-23
- 修改了词典处理方法,扩充了词典,分词效果有提升
- 效率进行了优化,测试速度较之前版本提升9倍左右
- 增加了在大规模混合数据集训练的通用模型,并将其设为默认使用模型
- 新版本发布:2019-1-30
- 支持fine-tune训练(从预加载的模型继续训练),支持设定训练轮数
- 新版本发布:2019-2-20
- 支持词性标注,增加了医疗、旅游细领域模型
- 为了获得好的效果和速度,强烈建议大家通过pip install更新到目前的最新版本
通过PyPI安装(自带模型文件):
pip3 install pkuseg
之后通过import pkuseg来引用建议更新到最新版本以获得更好的开箱体验:
pip3 install -U pkuseg
如果PyPI官方源下载速度不理想,建议使用镜像源,比如:
初次安装:pip3 install -i https://pypi.tuna.tsinghua.edu.cn/simple pkuseg
更新:
pip3 install -i https://pypi.tuna.tsinghua.edu.cn/simple -U pkuseg
注意:安装方式一和二目前仅支持linux,mac,windows 64 位的python3.5,python 3.6,python 3.7版本。
如果不使用pip安装方式,选择从GitHub下载,可运行以下命令安装:
python setup.py build_ext -i
GitHub的代码并不包括预训练模型,因此需要用户自行下载或训练模型,预训练模型可详见release。使用时需设定"model_name"为模型文件。
各类分词工具包的性能对比
我们选择jieba、THULAC等国内代表分词工具包与pkuseg做性能比较。
考虑到jieba分词和THULAC工具包等并没有提供细领域的预训练模型,为了便于比较,我们重新使用它们提供的训练接口在细领域的数据集上进行训练,用训练得到的模型进行中文分词。
我们选择Linux作为测试环境,在新闻数据(MSRA)、混合型文本(CTB8)、网络文本(WEIBO)数据上对不同工具包进行了准确率测试。我们使用了第二届国际汉语分词评测比赛提供的分词评价脚本。其中MSRA与WEIBO使用标准训练集测试集划分,CTB8采用随机划分。对于不同的分词工具包,训练测试数据的划分都是一致的;即所有的分词工具包都在相同的训练集上训练,在相同的测试集上测试。对于所有数据集,pkuseg使用了不使用词典的训练和测试接口。以下是pkuseg训练和测试代码示例:
pkuseg.train('msr_training.utf8', 'msr_test_gold.utf8', './models')
pkuseg.test('msr_test.raw', 'output.txt', user_dict=None)
细领域训练及测试结果
以下是在不同数据集上的对比结果:
MSRA | Precision | Recall | F-score |
---|---|---|---|
jieba | 87.01 | 89.88 | 88.42 |
THULAC | 95.60 | 95.91 | 95.71 |
pkuseg | 96.94 | 96.81 | 96.88 |
Precision | Recall | F-score | |
---|---|---|---|
jieba | 87.79 | 87.54 | 87.66 |
THULAC | 93.40 | 92.40 | 92.87 |
pkuseg | 93.78 | 94.65 | 94.21 |
默认模型在不同领域的测试效果
考虑到很多用户在尝试分词工具的时候,大多数时候会使用工具包自带模型测试。为了直接对比“初始”性能,我们也比较了各个工具包的默认模型在不同领域的测试效果。请注意,这样的比较只是为了说明默认情况下的效果,并不一定是公平的。
Default | MSRA | CTB8 | PKU | All Average | |
---|---|---|---|---|---|
jieba | 81.45 | 79.58 | 81.83 | 83.56 | 81.61 |
THULAC | 85.55 | 87.84 | 92.29 | 86.65 | 88.08 |
pkuseg | 87.29 | 91.77 | 92.68 | 93.43 | 91.29 |
其中,All Average
显示的是在所有测试集上F-score的平均。
更多详细比较可参见和现有工具包的比较。
使用方式
代码示例
以下代码示例适用于python交互式环境。
代码示例1:使用默认配置进行分词(如果用户无法确定分词领域,推荐使用默认模型分词)
import pkuseg seg = pkuseg.pkuseg() # 以默认配置加载模型
text = seg.cut('我爱北京天安门') # 进行分词
print(text)
代码示例2:细领域分词(如果用户明确分词领域,推荐使用细领域模型分词)
import pkuseg seg = pkuseg.pkuseg(model_name='medicine') # 程序会自动下载所对应的细领域模型
text = seg.cut('我爱北京天安门') # 进行分词
print(text)
代码示例3:分词同时进行词性标注,各词性标签的详细含义可参考 tags.txt
import pkuseg seg = pkuseg.pkuseg(postag=True) # 开启词性标注功能
text = seg.cut('我爱北京天安门') # 进行分词和词性标注
print(text)
代码示例4:对文件分词
import pkuseg # 对input.txt的文件分词输出到output.txt中
# 开20个进程
pkuseg.test('input.txt', 'output.txt', nthread=20)
代码示例5:额外使用用户自定义词典
import pkuseg seg = pkuseg.pkuseg(user_dict='my_dict.txt') # 给定用户词典为当前目录下的"my_dict.txt"
text = seg.cut('我爱北京天安门') # 进行分词
print(text)
代码示例6:使用自训练模型分词(以CTB8模型为例)
import pkuseg seg = pkuseg.pkuseg(model_name='./ctb8') # 假设用户已经下载好了ctb8的模型并放在了'./ctb8'目录下,通过设置model_name加载该模型
text = seg.cut('我爱北京天安门') # 进行分词
print(text)
代码示例7:训练新模型 (模型随机初始化)
import pkuseg # 训练文件为'msr_training.utf8'
# 测试文件为'msr_test_gold.utf8'
# 训练好的模型存到'./models'目录下
# 训练模式下会保存最后一轮模型作为最终模型
# 目前仅支持utf-8编码,训练集和测试集要求所有单词以单个或多个空格分开
pkuseg.train('msr_training.utf8', 'msr_test_gold.utf8', './models')
代码示例8:fine-tune训练(从预加载的模型继续训练)
import pkuseg # 训练文件为'train.txt'
# 测试文件为'test.txt'
# 加载'./pretrained'目录下的模型,训练好的模型保存在'./models',训练10轮
pkuseg.train('train.txt', 'test.txt', './models', train_iter=10, init_model='./pretrained')
参数说明
模型配置
pkuseg.pkuseg(model_name = "default", user_dict = "default", postag = False)
model_name 模型路径。
"default",默认参数,表示使用我们预训练好的混合领域模型(仅对pip下载的用户)。
"news", 使用新闻领域模型。
"web", 使用网络领域模型。
"medicine", 使用医药领域模型。
"tourism", 使用旅游领域模型。
model_path, 从用户指定路径加载模型。
user_dict 设置用户词典。
"default", 默认参数,使用我们提供的词典。
None, 不使用词典。
dict_path, 在使用默认词典的同时会额外使用用户自定义词典,可以填自己的用户词典的路径,词典格式为一行一个词。
postag 是否进行词性分析。
False, 默认参数,只进行分词,不进行词性标注。
True, 会在分词的同时进行词性标注。
对文件进行分词
pkuseg.test(readFile, outputFile, model_name = "default", user_dict = "default", postag = False, nthread = 10)
readFile 输入文件路径。
outputFile 输出文件路径。
model_name 模型路径。同pkuseg.pkuseg
user_dict 设置用户词典。同pkuseg.pkuseg
postag 设置是否开启词性分析功能。同pkuseg.pkuseg
nthread 测试时开的进程数。
模型训练
pkuseg.train(trainFile, testFile, savedir, train_iter = 20, init_model = None)
trainFile 训练文件路径。
testFile 测试文件路径。
savedir 训练模型的保存路径。
train_iter 训练轮数。
init_model 初始化模型,默认为None表示使用默认初始化,用户可以填自己想要初始化的模型的路径如init_model='./models/'。
多进程分词
当将以上代码示例置于文件中运行时,如涉及多进程功能,请务必使用if __name__ == '__main__'
保护全局语句,如:
mp.py文件
import pkuseg if __name__ == '__main__':
pkuseg.test('input.txt', 'output.txt', nthread=20)
pkuseg.train('msr_training.utf8', 'msr_test_gold.utf8', './models', nthread=20)
运行
python3 mp.py
详见无法使用多进程分词和训练功能,提示RuntimeError和BrokenPipeError。
在Windows平台上,请当文件足够大时再使用多进程分词功能,详见关于多进程速度问题。
预训练模型
从pip安装的用户在使用细领域分词功能时,只需要设置model_name字段为对应的领域即可,会自动下载对应的细领域模型。
从github下载的用户则需要自己下载对应的预训练模型,并设置model_name字段为预训练模型路径。预训练模型可以在release部分下载。以下是对预训练模型的说明:
news: 在MSRA(新闻语料)上训练的模型。
web: 在微博(网络文本语料)上训练的模型。
medicine: 在医药领域上训练的模型。
tourism: 在旅游领域上训练的模型。
mixed: 混合数据集训练的通用模型。随pip包附带的是此模型。
欢迎更多用户可以分享自己训练好的细分领域模型。
版本历史
- v0.0.11(2019-01-09)
- 修订默认配置:CTB8作为默认模型,不使用词典
- v0.0.14(2019-01-23)
- 修改了词典处理方法,扩充了词典,分词效果有提升
- 效率进行了优化,测试速度较之前版本提升9倍左右
- 增加了在大规模混合数据集训练的通用模型,并将其设为默认使用模型
- v0.0.15(2019-01-30)
- 支持fine-tune训练(从预加载的模型继续训练),支持设定训练轮数
- v0.0.18(2019-02-20)
- 支持词性标注,增加了医疗、旅游两个细领域模型
开源协议
- 本代码采用MIT许可证。
- 欢迎对该工具包提出任何宝贵意见和建议,请发邮件至jingjingxu@pku.edu.cn。
相关论文
该代码包主要基于以下科研论文,如使用了本工具,请引用以下论文:
- Xu Sun, Houfeng Wang, Wenjie Li. Fast Online Training with Frequency-Adaptive Learning Rates for Chinese Word Segmentation and New Word Detection. ACL. 253–262. 2012
传送门
PKUSeg的作者有三位,Ruixuan Luo (罗睿轩),Jingjing Xu (许晶晶) ,以及Xu Sun (孙栩) 。
工具包的诞生,也是基于其中两位参与的ACL论文。
准确率又那么高,还不去试试?
GitHub传送门:
https://github.com/lancopku/PKUSeg-python
论文传送门:
http://www.aclweb.org/anthology/P12-1027
http://aclweb.org/anthology/P16-2092
pkuseg:一个多领域中文分词工具包的更多相关文章
- 北大开源全新中文分词工具包:准确率远超THULAC、结巴分词
最近,北大开源了一个中文分词工具包,它在多个分词数据集上都有非常高的分词准确率.其中广泛使用的结巴分词误差率高达 18.55% 和 20.42,而北大的 pkuseg 只有 3.25% 与 4.32% ...
- 轻量级的中文分词工具包 - IK Analyzer
IK Analyzer是一个开源的,基于java语言开发的轻量级的中文分词工具包.从2006年12月推出1.0版开始, IKAnalyzer已经推出了4个大版本.最初,它是以开源项目Luence为应用 ...
- THULAC:一个高效的中文词法分析工具包(z'z)
网址:http://thulac.thunlp.org/ THULAC(THU Lexical Analyzer for Chinese)由清华大学自然语言处理与社会人文计算实验室研制推出的一套中文词 ...
- 中文分词工具简介与安装教程(jieba、nlpir、hanlp、pkuseg、foolnltk、snownlp、thulac)
2.1 jieba 2.1.1 jieba简介 Jieba中文含义结巴,jieba库是目前做的最好的python分词组件.首先它的安装十分便捷,只需要使用pip安装:其次,它不需要另外下载其它的数据包 ...
- ES-自然语言处理之中文分词器
前言 中文分词是中文文本处理的一个基础步骤,也是中文人机自然语言交互的基础模块.不同于英文的是,中文句子中没有词的界限,因此在进行中文自然语言处理时,通常需要先进行分词,分词效果将直接影响词性.句法树 ...
- NLP舞动之中文分词浅析(一)
一.简介 针对现有中文分词在垂直领域应用时,存在准确率不高的问题,本文对其进行了简要分析,对中文分词面临的分词歧义及未登录词等难点进行了介绍,最后对当前中文分词实现的算法原理(基于词表. ...
- Lucene的中文分词器IKAnalyzer
分词器对英文的支持是非常好的. 一般分词经过的流程: 1)切分关键词 2)去除停用词 3)把英文单词转为小写 但是老外写的分词器对中文分词一般都是单字分词,分词的效果不好. 国人林良益写的IK Ana ...
- Elasticsearch安装ik中文分词插件(四)
一.IK简介 IK Analyzer是一个开源的,基于java语言开发的轻量级的中文分词工具包.从2006年12月推出1.0版开始, IKAnalyzer已经推出了4个大版本.最初,它是以开源项目Lu ...
- Java实现敏感词过滤 - IKAnalyzer中文分词工具
IKAnalyzer 是一个开源的,基于java语言开发的轻量级的中文分词工具包. 官网: https://code.google.com/archive/p/ik-analyzer/ 本用例借助 I ...
随机推荐
- 前后端分离djangorestframework—— 接入第三方的验证码平台
关于验证码部分,在我这篇文章里说的挺详细的了:Python高级应用(3)—— 为你的项目添加验证码 这里还是再给一个前后端分离的实例,因为极验官网给的是用session作为验证的,而我们做前后端分离的 ...
- 基础学习14天 MD5加密
private static string GetMD5(string str) { //创建MD5对象 MD5 md5 = MD5.Create(); //字符串类型转换Wie字节 byte[] b ...
- AngularJS学习之旅—AngularJS SQL(十二)
一.使用 PHP 从 MySQL 中获取数据 <div ng-app="myApp" ng-controller="customersCtrl"> ...
- Allowed memory size of 134217728 bytes exhausted解决办法(php内存耗尽报错)【简记】
报错: PHP Fatal error: Allowed memory size of 134217728 bytes exhausted (tried to allocate 72 bytes) i ...
- Vim 宏
宏的概念 什么是宏呢?英文名:macro,代表一串命令的集合. 示例操作文本 SELECT * FROM `edu_ocr_task` WHERE ((`userId`=284871) AND (`u ...
- 同步锁Synchronized与Lock的区别?
synchronized与Lock两者区别: 1:Lock是一个接口,而Synchronized是关键字. 2:Synchronized会自动释放锁,而Lock必须手动释放锁. 3:Lock可以让等待 ...
- HTML,CSS---问题记录
1,,登录框input和标签垂直方向对不齐,咋解决? 给input框外套一层span标签,给span标签设置宽高,让它和左边或右边的标签对齐. 不要直接给input设置宽高,这样是对不齐的 2,套没有 ...
- 第1章 初始Docker容器
1.1 什么是Docker slogan:Build Ship Run Any App Anywher.关键在于Ship,通过把程序和程序运行所需要的环境一起交付. Linux容器技术: Docker ...
- iOS开发基础-图片切换(1)
一.程序功能分析 1)点击左右箭头切换图片.序号.描述: 2)如果是首张图片,左边箭头失效: 3)如果是最后一张图片,右边箭头失效. 二.程序实现 定义确定图片位置.大小的常量: //ViewCont ...
- 玩转3D Swiper美女性感秀之思路分析总结
前言 继一次的3D魔方之后,这次利用CSS3的transform.translate.rotate.preserve-3d等结合JS的requestAnimationFrame.class带你一起玩转 ...