[再寄小读者之数学篇](2014-06-26 Logarithmical Sobolev inequality using BMO space)
$$\bex q>3\ra \sen{\n f}_{L^\infty} \leq C(q)\sez{ 1+\sen{\n f}_{BMO} \ln^\frac{1}{2}\sex{e+\sen{\n f}_{W^{1,q}}+\sen{f}_{L^\infty}} }. \eex$$ $$\bex m\geq 3\ra \sen{\n f}_{L^\infty}\leq C\sez{ 1+\sen{\n f}_{BMO} \ln^\frac{1}{2} \sex{1+\sen{\n f}_{H^m}} }. \eex$$ see [D. Chae, J. Lee, On the blow-up criterion and small data global existence for the Hall-magnetohydrodynamics, J. Differential Equations, 256 (2014), 3835--3858].
[再寄小读者之数学篇](2014-06-26 Logarithmical Sobolev inequality using BMO space)的更多相关文章
- [再寄小读者之数学篇](2014-06-21 Beal-Kaot-Majda type logarithmic Sobolev inequality)
For $f\in H^s(\bbR^3)$ with $s>\cfrac{3}{2}$, we have $$\bex \sen{f}_{L^\infty}\leq C\sex{1+\sen{ ...
- [再寄小读者之数学篇](2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合)
(2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合) 设 ${\bf A},{\bf B}$ 都是反对称矩阵, 且 ${\b ...
- [再寄小读者之数学篇](2014-06-22 求导数 [中国科学技术大学2014年高等数学B考研试题])
设 $f(x)=x^2\ln(x+1)$, 求 $f^{(n)}(0)$. 解答: 利用 Leibniz 公式易知 $f'(0)=f''(0)=0$, $f^{(n)}(0)=(-1)^{n-3} n ...
- [再寄小读者之数学篇](2014-06-26 Besov space estimates)
(1) $$\bex \sen{D^k f}_{\dot B^s_{p,q}}\sim \sen{f}_{\dot B^{s+k}_{p,q}}. \eex$$ (2) $$\beex \bea &a ...
- [再寄小读者之数学篇](2014-06-23 Bernstein's inequality)
$$\bex \supp \hat u\subset \sed{2^{j-2}\leq |\xi|\leq 2^j} \ra \cfrac{1}{C}2^{jk}\sen{f}_{L^p} \leq ...
- [再寄小读者之数学篇](2014-06-20 求极限-H\"older 不等式的应用)
设非负严格增加函数 $f$ 在区间 $[a,b]$ 上连续, 有积分中值定理, 对于每个 $p>0$ 存在唯一的 $x_p\in (a,b)$, 使 $$\bex f^p(x_p)=\cfrac ...
- [再寄小读者之数学篇](2014-04-08 from 1297503521@qq.com $\sin x-x\cos x=0$ 的根的估计)
(2014-04-08 from 1297503521@qq.com) 设方程 $\sin x-x\cos x=0$ 在 $(0,+\infty)$ 中的第 $n$ 个解为 $x_n$. 证明: $$ ...
- [再寄小读者之数学篇](2014-12-04 $\left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0.$)
试证: $$\bex \left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0. \eex$$ 证明 (from Hanssch ...
- [再寄小读者之数学篇](2014-11-26 广义 Schur 分解定理)
设 $A,B\in \bbR^{n\times n}$ 的特征值都是实数, 则存在正交阵 $P,Q$ 使得 $PAQ$, $PBQ$ 为上三角阵.
随机推荐
- js字符串String提取方法比较
JavaScript: Slice, Substring, or Substr的选择! 在JavaScript中,字符串主要通过以下String方法之一提取: // slice // syntax: ...
- C#基础知识之反射
http://blog.csdn.net/educast/article/details/2894892 两个现实中的例子:1.B超:大家体检的时候大概都做过B超吧,B超可以透过肚皮探测到你内脏的生理 ...
- Maven pom.xml中的元素modules、parent、properties以及import
前言 项目中用到了maven,而且用到的内容不像利用maven/eclipse搭建ssm(spring+spring mvc+mybatis)用的那么简单:maven的核心是pom.xml,那么我就它 ...
- vue 使用localStorage解决vuex在页面刷新后数据被清除的问题
通常,我们在使用vue编写页面时,会需要使用vuex在组件间传递(或者说共同响应)同一个数据的变化.例如:用户的登录信息. 下面,我们使用传递用户登录信息的例子来一步步解决这个问题. 首先,我们的第一 ...
- 解析Object.defineProperty的作用
对象是由多个名/值对组成的无序的集合.对象中每个属性对应任意类型的值. 定义对象可以使用构造函数或字面量的形式: 除了以上添加属性的方式,还可以使用Object.defineProperty定义新属性 ...
- Koa 框架介绍
Node.js 是一个异步的世界,官方 API 支持的都是 callback 形式的异步编程模型,这 会带来许多问题,例如:callback 嵌套问题 ,异步函数中可能同步调用 callback 返回 ...
- [LeetCode] 16. 最接近的三数之和
题目链接:https://leetcode-cn.com/problems/3sum-closest/ 题目描述: 给定一个包括 n 个整数的数组 nums 和 一个目标值 target.找出 num ...
- C#多线程与并行编程方面的电子书,中英文版本
给大家共享一些C#多线程与并行编程方面的电子书,中英文版本的. 链接: 百度网盘地址 提取码: y99a
- 妙解Servlet四大域对象
pageContext pageContext作用域为page(页面执行期). request request是表示一个请求,只要发出一个请求就会创建一个request,它的作用域仅在当前请求中有效. ...
- spark-MLlib之协同过滤ALS
协同过滤与推荐 协同过滤是一种根据用户对各种产品的交互与评分来推荐新产品的推荐系统技术. 协同过滤引入的地方就在于它只需要输入一系列用户/产品的交互记录: 无论是显式的交互(例如在购物网站 ...