HDU2955_Robberies【01背包】
Problem Description
The aspiring Roy the Robber has seen a lot of American movies, and knows that the bad guys usually gets caught in the end, often because they become too greedy. He has decided to work in the lucrative business of bank robbery only for a short while, before
retiring to a comfortable job at a university.

For a few months now, Roy has been assessing the security of various banks and the amount of cash they hold. He wants to make a calculated risk, and grab as much money as possible.
His mother, Ola, has decided upon a tolerable probability of getting caught. She feels that he is safe enough if the banks he robs together give a probability less than this.
Input
The first line of input gives T, the number of cases. For each scenario, the first line of input gives a floating point number P, the probability Roy needs to be below, and an integer N, the number of banks he has plans for. Then follow N lines, where line
j gives an integer Mj and a floating point number Pj .
Bank j contains Mj millions, and the probability of getting caught from robbing it is Pj .
Output
For each test case, output a line with the maximum number of millions he can expect to get while the probability of getting caught is less than the limit set.
Notes and Constraints
0 < T <= 100
0.0 <= P <= 1.0
0 < N <= 100
0 < Mj <= 100
0.0 <= Pj <= 1.0
A bank goes bankrupt if it is robbed, and you may assume that all probabilities are independent as the police have very low funds.
Sample Input
3
0.04 3
1 0.02
2 0.03
3 0.05
0.06 3
2 0.03
2 0.03
3 0.05
0.10 3
1 0.03
2 0.02
3 0.05
Sample Output
2
4
6
题目大意:有一个强盗要去几个银行偷盗。他既想多投点钱,又想尽量不被抓到。已知各个银行
的金钱数和被抓的概率,以及强盗能容忍的最大被抓概率。求他最多能偷到多少钱?
思路:背包问题,原先想的是把概率当做背包,在这个范围内最多能抢多少钱。
可是问题出在概率这里,一是由于概率是浮点数。用作背包必须扩大10^n倍来用。二是最大不
被抓概率不是简单的累加。二是p = (1-p1)(1-p2)(1-p3) 当中p为最大不被抓概率,p1。p2。p3
为各个银行被抓概率。
第二次想到把银行的钱当做背包,把概率当做价值,总容量为全部银行的总钱数,求不超过被抓
概率的情况下,最大的背包容量是多少
dp[j] = max(dp[j],dp[j-Bag[i].v]*(1-Bag[i].p))(dp[j]表示在被抢概率j之下能抢的钱);
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std; struct bag
{
int v;
double p;
}Bag[10010];
double dp[10010]; int main()
{
int T,N;
double p;
scanf("%d",&T);
while(T--)
{
scanf("%lf %d",&p,&N);
int sum = 0;
for(int i = 0; i < N; i++)
{
scanf("%d%lf",&Bag[i].v,&Bag[i].p);
sum += Bag[i].v;
}
memset(dp,0,sizeof(dp));
dp[0] = 1;
for(int i = 0; i < N; i++)
{
for(int j = sum; j >= Bag[i].v; j--)
{
dp[j] = max(dp[j],dp[j-Bag[i].v]*(1-Bag[i].p));
}
} for(int i = sum; i >= 0; i--)
{
if(dp[i] > 1-p)
{
printf("%d\n",i);
break;
}
}
}
return 0;
}
HDU2955_Robberies【01背包】的更多相关文章
- hdu2955_Robberies 01背包
有一个强盗要去几个银行偷盗,他既想多投点钱,又想尽量不被抓到.已知各个银行 的金钱数和被抓的概率,以及强盗能容忍的最大被抓概率.求他最多能偷到多少钱? 解:以概率为价值 问价值在合理范围背包的最大容量 ...
- UVALive 4870 Roller Coaster --01背包
题意:过山车有n个区域,一个人有两个值F,D,在每个区域有两种选择: 1.睁眼: F += f[i], D += d[i] 2.闭眼: F = F , D -= K 问在D小于等于一定限度的时 ...
- POJ1112 Team Them Up![二分图染色 补图 01背包]
Team Them Up! Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 7608 Accepted: 2041 S ...
- Codeforces 2016 ACM Amman Collegiate Programming Contest A. Coins(动态规划/01背包变形)
传送门 Description Hasan and Bahosain want to buy a new video game, they want to share the expenses. Ha ...
- 51nod1085(01背包)
题目链接: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1085 题意: 中文题诶~ 思路: 01背包模板题. 用dp[ ...
- *HDU3339 最短路+01背包
In Action Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total S ...
- codeforces 742D Arpa's weak amphitheater and Mehrdad's valuable Hoses ——(01背包变形)
题意:给你若干个集合,每个集合内的物品要么选任意一个,要么所有都选,求最后在背包能容纳的范围下最大的价值. 分析:对于每个并查集,从上到下滚动维护即可,其实就是一个01背包= =. 代码如下: #in ...
- POJ 3624 Charm Bracelet(01背包)
Charm Bracelet Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 34532 Accepted: 15301 ...
- (01背包变形) Cow Exhibition (poj 2184)
http://poj.org/problem?id=2184 Description "Fat and docile, big and dumb, they look so stupid ...
- hdu3339 In Action(Dijkstra+01背包)
/* 题意:有 n 个站点(编号1...n),每一个站点都有一个能量值,为了不让这些能量值连接起来,要用 坦克占领这个站点!已知站点的 之间的距离,每个坦克从0点出发到某一个站点,1 unit dis ...
随机推荐
- Android中使用Gson解析JSON数据
Android中使用Gson解析JSON数据 在Android中可以使用Gson解析JSON数据 首先,从 code.google.com/p/google-gson/downloads/list ...
- 棋盘问题(dfs)
http://poj.org/problem?id=1321 思路:按行搜索,回溯时还原棋盘. #include <stdio.h> #include <string.h> ] ...
- Python 45 css三种引入方式以及优先级
一:css三种引入方式 三种方式为:行间式 | 内联式 | 外联式 行间式 1.在标签头部的style属性内 2.属性值满足的是css语法 3.属性值用key:value形式赋值,value具 ...
- Windows<小白>详细笔记
Windows 7 部署 =========================================== ========================================== ...
- 自学Python五 爬虫基础练习之SmartQQ协议
BAT站在中国互联网的顶端,引导着中国互联网的发展走向...既受到了多数程序员的关注,也在被我们所惦记着... 关于SmartQQ的协议来自HexBlog,根据他的博客我自己也一步一步的去分析,去尝试 ...
- php正则表达式应用
正则表达式 1.替换“/\d/”,“#”,$str:正则表达式\d 数字,替换为#,字符串 $str = "2hello 5li 6lei"; echo preg_replace( ...
- 复习java基础第六天(IO)
一:File 类 • 输入:读取外部数据(磁盘.光盘等存储设备的数据)到程序(内存)中. • 输出:将程序(内存)数据输出到磁盘.光盘等存储设备中 • Java 的 IO 流主要包括输入.输出两种 ...
- ui界面设计
UI即User Interface(用户界面)的简称,指对软件的人机交互.操作逻辑.界面美观的整体设计.好的UI设计不仅是让软件变得有个性有品位,还要让软件的操作变得舒适简单.自由,充分体现软件的定位 ...
- 浏览器 HTTP 协议缓存机制详解--网络缓存决策机制流程图
1.缓存的分类 2.浏览器缓存机制详解 2.1 HTML Meta标签控制缓存 2.2 HTTP头信息控制缓存 2.2.1 浏览器请求流程 2.2.2 几个重要概念解释 3.用户行为与缓存 4.Ref ...
- res对象json,redirect
1.res.json() var express=require('express'); var app=express(); app.get('/',function(req,res){ //返回j ...