【题目链接】:http://www.lydsy.com/JudgeOnline/problem.php?id=1025

【题意】

【题解】



每一个对应关系,里面其实都会生成大小不一的几个环.

每一个环的大小.对应了里面的数字经过多少轮的变换之后能恢复原状.

则最后总的变回原状相当于求各个环的大小的最小公倍数.

这个最小公倍数就是所需要的排数.

原题意就等价于

给你一个数字n;

让你挑选若干个数字

它们的和为n;

求这些数字不同的最小公倍数的个数.

正面考虑不好考虑;

考虑反面;

就是已经知道了一个最小公倍数X

这里

X=a1^b1*a2^b2…ak^bk

->质数唯一分解定理;

这样我们可以先构造一个数列

{a1^b1,a2^b2…,ak^bk}

这k个数字是和最小的,且满足他们的最小公倍数是X的数列;

则设T=a1^b1+a2^b2+…+ak^bk

如果T=n

则显然符合题意.k个数字,每个数字对应ai^bi就好;

而如果 T< n

则也符合题意;

因为你可以在ak^bk后面再加上n-T个1;

这样对它们的最小公倍数不会有影响;且总数也符合为n;

而如果T>n;

则无解了;

因为T已经是最小的了;

如果还不行就没办法了;

所以只要T<=n,则这个数字就是可达到的.

根据以上分析;

我们求出1..n里面的所有质数a[i];

然后每个质数枚举它的指数;

然后用动态规划的方法求出最终解;

设f[i][j]表示前i个质数,和为j的方案数;

f[i][j] = f[i-1][j]+∑(f[i-][j-a[i]^k]) 这里j-a[i]^k>=0

最后累加

f[tot][0..n]即可;

tot是1..n里面质数的个数.

答案会很大。开long long



【完整代码】

#include <bits/stdc++.h>
using namespace std;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define LL long long
#define rep1(i,a,b) for (int i = a;i <= b;i++)
#define rep2(i,a,b) for (int i = a;i >= b;i--)
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define rei(x) scanf("%d",&x)
#define rel(x) scanf("%lld",&x)
#define ref(x) scanf("%lf",&x) typedef pair<int, int> pii;
typedef pair<LL, LL> pll; const int dx[9] = { 0,1,-1,0,0,-1,-1,1,1 };
const int dy[9] = { 0,0,0,-1,1,-1,1,-1,1 };
const double pi = acos(-1.0);
const int N = 1e3 + 100; int n,tot;
int a[N];
LL f[N][N],ans = 0; bool is(int x)
{
int len = sqrt(x);
rep1(i, 2, len)
if (x%i == 0)
return false;
return true;
} void input_data()
{
rei(n);
} void get_ans()
{
rep1(i, 2, n)
if (is(i))
a[++tot] = i; f[0][0] = 1;
rep1(i, 1, tot)
{
rep1(j, 0, n)
{
f[i][j] = f[i - 1][j];
int k = a[i];
while (j - k >= 0)
{
f[i][j] += f[i - 1][j - k];
k = k*a[i];
}
}
} rep1(i, 0, n)
ans += f[tot][i];
} void output_ans()
{
printf("%lld\n", ans);
} int main()
{
//freopen("F:\\rush.txt", "r", stdin);
input_data();
get_ans();
output_ans();
//printf("\n%.2lf sec \n", (double)clock() / CLOCKS_PER_SEC);
return 0;
}

【BZOJ 1025】[SCOI2009]游戏的更多相关文章

  1. BZOJ 1025 [SCOI2009]游戏

    1025: [SCOI2009]游戏 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1533  Solved: 964[Submit][Status][ ...

  2. BZOJ 1025: [SCOI2009]游戏( 背包dp )

    显然题目要求长度为n的置换中各个循环长度的lcm有多少种情况. 判断一个数m是否是满足题意的lcm. m = ∏ piai, 当∑piai ≤ n时是满足题意的. 最简单我们令循环长度分别为piai, ...

  3. [BZOJ 1025] [SCOI2009] 游戏 【DP】

    题目链接:BZOJ - 1025 题目分析 显然的是,题目所要求的是所有置换的每个循环节长度最小公倍数的可能的种类数. 一个置换,可以看成是一个有向图,每个点的出度和入度都是1,这样整个图就是由若干个 ...

  4. bzoj 1025 [SCOI2009]游戏(置换群,DP)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1025 [题意] 给定n,问1..n在不同的置换下变回原序列需要的不同排数有多少种. [ ...

  5. [bzoj 1025][SCOI2009]游戏(DP)

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1025 分析:首先这个问题等价于A1+A2+……Ak=n,求lcm(A1,A2,……,Ak)的种 ...

  6. BZOJ 1025 SCOI2009 游戏 动态规划

    标题效果:特定n.行定义一个替代品1~n这种更换周期发生后,T次要(T>0)返回到原来的顺序 找到行的所有可能的数 循环置换分解成若干个,然后行位移数是这些周期的长度的最小公倍数 因此,对于一些 ...

  7. BZOJ 1025: [SCOI2009]游戏 [置换群 DP]

    传送门 题意:求$n$个数组成的排列变为升序有多少种不同的步数 步数就是循环长度的$lcm$..... 那么就是求$n$划分成一些数几种不同的$lcm$咯 然后我太弱了这种$DP$都想不出来.... ...

  8. bzoj 1025: [SCOI2009]游戏【数学+dp】

    很容易发现行数就是lcm环长,也就是要求和为n的若干数lcm的个数 有结论若p1^a1+p2^a2+...+pm^am<=n,则ans=p1^a1p2^a2..*pm^am是n的一个可行答案.( ...

  9. BZOJ 1025 [SCOI2009]游戏 (DP+分解质因子)

    题意: 若$a_1+a_2+\cdots+a_h=n$(任意h<=n),求$lcm(a_i)$的种类数 思路: 设$lcm(a_i)=x$, 由唯一分解定理,$x=p_1^{m_1}+p_2^{ ...

  10. 【BZOJ】1025: [SCOI2009]游戏(置换群+dp+特殊的技巧+lcm)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1025 首先根据置换群可得 $$排数=lcm\{A_i, A_i表示循环节长度\}, \sum_{i= ...

随机推荐

  1. GO语言学习(十七)Go 语言类型转换

    Go 语言类型转换 类型转换用于将一种数据类型的变量转换为另外一种类型的变量.Go 语言类型转换基本格式如下: type_name(expression) type_name 为类型,expressi ...

  2. programming+windows+MFC

    1)CMyApp declares no data members 2)CWinApp::InitInstance run after application build but before the ...

  3. SpringMVC学习总结(2)——SpringMVC返回json配置

    <!-- 避免IE执行AJAX时,返回JSON出现下载文件 --> <bean id="mappingJacksonHttpMessageConverter" c ...

  4. [D3] Creating a D3 Force Layout in React

    Learn how to leverage d3's layout module to create a Force Layout inside of React. We'll take a look ...

  5. [D3] Animate Chart Axis Transitions in D3 v4

    When the data being rendered by a chart changes, sometimes it necessitates a change to the scales an ...

  6. 装饰模式和python装饰器

    装饰器和装饰模式 先给出两者的定义: - 装饰器:装饰器是一个非常著名的设计模式,常常被用于有切面需求的场景.较为经典的有插入日志.性能測试.事务处理等. 装饰器是解决这类问题的绝佳设计.有了装饰器, ...

  7. 发布一个stl标准库容器类(vector/list)的安全删除方法

    话不多说,看代码. #include <functional> #ifndef ASSERT #include <cassert> #define ASSERT assert ...

  8. Altium Designer如何重命名文件

  9. 百度ueditor vue项目应用 -- 图片上传源码修改

    本文目的有两个,一.废掉单图上传,二.改造多图上传 大家都知道百度ueditor不是针对vue项目开发的,官方文档提供的源码包里有需要后端配置的接口,but到vue项目就不太好办了,网上有些文章也介绍 ...

  10. java并发之生产者消费者模型

    生产者和消费者模型是操作系统中经典的同步问题.该问题最早由Dijkstra提出,用以演示它提出的信号量机制. 经典的生产者和消费者模型的描写叙述是:有一群生产者进程在生产产品.并将这些产品提供给消费者 ...