[Scikit-Learn] - 数据预处理 - 缺失值(Missing Value)处理
reference : http://www.cnblogs.com/chaosimple/p/4153158.html
关于缺失值(missing value)的处理
在sklearn的preprocessing包中包含了对数据集中缺失值的处理,主要是应用Imputer类进行处理。
首先需要说明的是,numpy的数组中可以使用np.nan/np.NaN(Not A Number)来代替缺失值,对于数组中是否存在nan可以使用np.isnan()来判定。
使用type(np.nan)或者type(np.NaN)可以发现改值其实属于float类型,代码如下:
|
1
2
3
4
5
6
7
8
|
>>> type(np.NaN)<type 'float'>>>> type(np.nan)<type 'float'>>>> np.NaNnan>>> np.nannan |
因此,如果要进行处理的数据集中包含缺失值一般步骤如下:
1、使用字符串'nan'来代替数据集中的缺失值;
2、将该数据集转换为浮点型便可以得到包含np.nan的数据集;
3、使用sklearn.preprocessing.Imputer类来处理使用np.nan对缺失值进行编码过的数据集。
代码如下:
|
1
2
3
4
5
6
7
8
9
10
|
>>> from sklearn.preprocessing import Imputer>>> imp = Imputer(missing_values='NaN', strategy='mean', axis=0)>>> X=np.array([[1, 2], [np.nan, 3], [7, 6]])>>> Y=[[np.nan, 2], [6, np.nan], [7, 6]]>>> imp.fit(X)Imputer(axis=0, copy=True, missing_values='NaN', strategy='mean', verbose=0)>>> imp.transform(Y)array([[ 4. , 2. ], [ 6. , 3.66666667], [ 7. , 6. ]]) |
上述代码使用数组X去“训练”一个Imputer类,然后用该类的对象去处理数组Y中的缺失值,缺失值的处理方式是使用X中的均值(axis=0表示按列进行)代替Y中的缺失值。
当然也可以使用imp对象来对X数组本身进行处理。
通常,我们的数据都保存在文件中,也不一定都是Numpy数组生成的,因此缺失值可能不一定是使用nan来编码的,对于这种情况可以参考以下代码:
|
1
2
3
4
5
6
7
8
9
10
11
12
|
>>> line='1,?'>>> line=line.replace(',?',',nan')>>> line'1,nan'>>> Z=line.split(',')>>> Z['1', 'nan']>>> Z=np.array(Z,dtype=float)>>> Zarray([ 1., nan])>>> imp.transform(Z)array([[ 1. , 3.66666667]]) |
上述代码line模拟从文件中读取出来的一行数据,使用nan来代替原始数据中的缺失值编码,将其转换为浮点型,然后使用X中的均值填补Z中的缺失值。
[Scikit-Learn] - 数据预处理 - 缺失值(Missing Value)处理的更多相关文章
- 【原】关于使用Sklearn进行数据预处理 —— 缺失值(Missing Value)处理
关于缺失值(missing value)的处理 在sklearn的preprocessing包中包含了对数据集中缺失值的处理,主要是应用Imputer类进行处理. 首先需要说明的是,numpy的数组中 ...
- 关于使用sklearn进行数据预处理 —— 归一化/标准化/正则化
一.标准化(Z-Score),或者去除均值和方差缩放 公式为:(X-mean)/std 计算时对每个属性/每列分别进行. 将数据按期属性(按列进行)减去其均值,并处以其方差.得到的结果是,对于每个属 ...
- scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类 (python代码)
scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import ...
- 机器学习实战基础(十):sklearn中的数据预处理和特征工程(三) 数据预处理 Preprocessing & Impute 之 缺失值
缺失值 机器学习和数据挖掘中所使用的数据,永远不可能是完美的.很多特征,对于分析和建模来说意义非凡,但对于实际收集数据的人却不是如此,因此数据挖掘之中,常常会有重要的字段缺失值很多,但又不能舍弃字段的 ...
- python data analysis | python数据预处理(基于scikit-learn模块)
原文:http://www.jianshu.com/p/94516a58314d Dataset transformations| 数据转换 Combining estimators|组合学习器 Fe ...
- (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探
目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...
- 使用sklearn进行数据挖掘-房价预测(4)—数据预处理
在使用机器算法之前,我们先把数据做下预处理,先把特征和标签拆分出来 housing = strat_train_set.drop("median_house_value",axis ...
- [数据预处理]-中心化 缩放 KNN(一)
据预处理是总称,涵盖了数据分析师使用它将数据转处理成想要的数据的一系列操作.例如,对某个网站进行分析的时候,可能会去掉 html 标签,空格,缩进以及提取相关关键字.分析空间数据的时候,一般会把带单位 ...
- Scikit Learn: 在python中机器学习
转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的 ...
随机推荐
- WebClient 请求返回的是Gbk编码解决方案
WebClient client = new WebClient(); client.Headers.Clear(); client.Hea ...
- <转> Intel VTune分析结果中的名词释译
原文转自http://blog.chinaunix.net/uid-26000296-id-3369740.html Elapsed Time(执行耗时): the total time your t ...
- Java抽象类中的抽象方法的参数对应的子类的方法的参数必须一致吗?
同学你这个涉及了两个概念. 一个是抽象方法,一个是方法重载. 先说下概念: 抽象方法就是abstract描述的方法,它本身不含实现,必须由子类实现. 方法重载则是同一个方法名,但是参数类型或者参数个数 ...
- eclipse编译器错误、警告设置
颜色配置步骤:Window->Preferences->General->Editors->Text Editors->Annotations
- JAVA中正則表達式总结(具体解释及用途)
很多语言,包含Perl.PHP.Python.JavaScript和JScript,都支持用正則表達式处理文本,一些文本编辑器用正則表達式实现高级"搜索-替换"功能.所以JAVA语 ...
- 组合搜索(combinatorial search)在算法求解中的应用
1. 分治.动态规划的局限性 没有合适的分割方式时,就不能使用分治法: 没有合适的子问题或占用内存空间太大时,就不能用动态规划: 此时还需要回到最基本的穷举搜索算法. 穷举搜索(exhaustive ...
- goland 2018.2 激活
感谢 http://blog.sina.com.cn/s/blog_1885d23df0102ydjc.html http://www.3322.cc/soft/38102.html 下载 htt ...
- linux下实现监控进程网络带宽
嗯,近期都在网易游戏实习,所以貌似有段时间没有上来写点东西了... 来网易游戏实习最基本的目的事实上就是想知道在游戏公司里面工作都是些什么内容,毕竟自己曾经也没有接触过游戏公司.. 还比較的好奇.. ...
- swift学习第九天:可选类型以及应用场景
可选类型的介绍 注意: 可选类型时swift中较理解的一个知识点 暂时先了解,多利用Xcode的提示来使用 随着学习的深入,慢慢理解其中的原理和好处 概念: 在OC开发中,如果一个变量暂停不使用,可以 ...
- Angular 2 HostListener & HostBinding
原文 https://www.jianshu.com/p/20c2d60802f7 大纲 1.宿主元素(Host Element) 2.HostListener 3.HostListenerDecor ...