[bzoj4282]慎二的随机数列_动态规划_贪心
慎二的随机数列 bzoj-4282
题目大意:一个序列,序列上有一些数是给定的,而有一些位置上的数可以任意选择。问最长上升子序列。
注释:$1\le n\le 10^5$。
想法:结论:逢N必选。N是可以任意选择的位置。
具体的,我们将所有N踢出序列,将给定的权值-=前面N的个数。再在当前序列上求最长上升子序列。
正确性的话如果当前序列中的数:
如果前面的数小于后面的数,显然中间的N我也可以加上。
如果前面的数大于后面的数:
如果前面的数在原序列中的权值大于后面的数在原序列中的权值,那么这两个数无论如何都不能同时选择。
而如果前面的数在原序列中的数小于后面的数在原序列中的权值,那么我们选择抛弃后面的数转而选择中间的所有N,显然更优。
最后,附上丑陋的代码... ...
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 100010
using namespace std;
int dp[N],sum,a[N],cnt;
int q[N];
int maxn=0;
int main()
{
int n; cin >> n ;
char opt[10];
for(int i=1;i<=n;i++)
{
scanf("%s",opt+1);
if(opt[1]=='K')
{
int x; scanf("%d",&x);
x-=sum;
a[++cnt]=x;
}
else sum++;
}
int ans=0;
for(int i=1;i<=cnt;i++)
{
int l=0,r=ans;
while(l!=r)
{
int mid=(l+r+1)>>1;
if(a[q[mid]]<a[i]) l=mid;
else r=mid-1;
}
l++;
ans=max(ans,l);
q[l]=i;
}
printf("%d\n",ans+sum);
}
小结:这题...不禁让我想到了Claris的CDQ分治+扫描线+树状数组...
证明对于计算机竞赛的用处,就是可以简化一个复杂的算法(个人理解)。
[bzoj4282]慎二的随机数列_动态规划_贪心的更多相关文章
- [BZOJ5427]最长上升子序列/[BZOJ4282]慎二的随机数列
[BZOJ5427]最长上升子序列/[BZOJ4282]慎二的随机数列 题目大意: 给你一个长度为\(n(n\le10^5)\)的整数序列,其中有一些数已经模糊不清了,现在请你任意确定这些整数的值,使 ...
- bzoj4282慎二的随机数列
海带头又上线了QwQ~ 这是一个奇怪的lis问题 显然一定存在一种最优答案使所有辨认不清的数都在答案中. [为什么呢]因为你完全可以用一个'N'来替换一个'K'啊QwQ~ 那么在选完所有'N'之后,一 ...
- BZOJ4282 : 慎二的随机数列
首先在开头加上-inf,结尾加上inf,最后答案减2即可. 设s[i]为i之前未知的个数,f[i]为以i结尾的LIS,且a[i]已知,那么: f[i]=max(f[j]+min(s[i]-s[j],a ...
- bzoj4282 慎二的随机数列 树状数组求LIS + 构造
首先,我们不难发现N个位置都选一定不会比少选任意几个差,所以我们就先设定我们将这N个修改机会都用上, 那么如果点 i">ii 前有sumv">sumvsumv个可修改点 ...
- 【BZOJ4282】慎二的随机数列 乱搞
[BZOJ4282]慎二的随机数列 Description 间桐慎二是间桐家著名的废柴,有一天,他在学校随机了一组随机数列, 准备使用他那强大的人工智能求出其最长上升子序列,但是天有不测风云,人有旦夕 ...
- 【bzoj4282】慎二的随机数列
扯几句题外的,最近在看Fate/StayNight,对此人毫无好感…… 每次减一下当前可辨认数,然后随意dp一个LIS,最后记得加回去就好. #include<bits/stdc++.h> ...
- BZOJ 4282(慎二的随机数列
题解: 网上题解还没看 我的方法是用平衡树维护一个单调栈 由于N用了一定是赚的 所以它的作用是让f[i+1]=f[i]+1 这个是可以记录的 就跟noip蚯蚓那题一样 然后插入一个值的时候查询前面的最 ...
- [bzoj1855][Scoi2010]股票交易_动态规划_单调队列
股票交易 bzoj-1855 Scoi-2010 题目大意:说不明白题意系列++...题目链接 注释:略. 想法:这个题还是挺难的. 动态规划没跑了 状态:dp[i][j]表示第i天手里有j个股票的最 ...
- [bzoj3622]已经没有什么好害怕的了_动态规划_容斥原理
bzoj-3622 已经没有什么好害怕的了 题目大意: 数据范围:$1\le n \le 2000$ , $0\le k\le n$. 想法: 首先,不难求出药片比糖果小的组数. 紧接着,我开始的想法 ...
随机推荐
- Linux进程状态解析
引言 Linux是一个多用户,多任务的系统,可以同时运行多个用户的多个程序,就必然会产生很多的进程,而每个进程会有不同的状态. 在下文将对进程的R.S.D.T.Z.X 六种状态做个说明. PROCE ...
- ural 1009. K-based Numbers(简单dp)
http://acm.timus.ru/problem.aspx?space=1&num=1009 题意:将一个n位数转化为合法的K进制数,有多少种情况.合法的K进制数即不含前导0,且任意两个 ...
- (function(){})();和(function(){}())每个括号的用途和区别
(function(){…})(); 这种写法是因为JS中没有块级作用域的概念,所以可以用lambda函数来模仿块级作用域,这个的作用是定义并立即调用一个lambda函数,这个函数中定义的任何变量,都 ...
- LuaBridge
不能直接公开基类的函数,必须单独公开基类,并声明继承关系 deriveClass<Player, BaseController>("Player") 直接公开基类的函 ...
- bzoj1036 树的统计(树链剖分+线段树)
1036: [ZJOI2008]树的统计Count Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 15120 Solved: 6141[Submit ...
- akka设计模式系列-慎用ask
慎用ask应该是Akka设计的一个准则,很多时候我们应该禁用ask.之所以单独把ask拎出来作为一篇博文,主要是akka的初学者往往对ask的使用比较疑惑. "Using ask will ...
- Netty(2) - HelloWorld
Netty:作用场景. 1)Netty可以基于socket实现远程过程调用(RPC). 2)Netty可以基于WebSocket实现长连接. 3)Netty可以实现Http的服务器,类似于Jetty, ...
- C#通过SqlConnection连接查询更新等操作Sqlserver数据库
Sqlserver数据库连接方式有多种,这里只介绍最常用的通过SqlConnection和Sqlserver数据库用户名和密码验证来进行操作数据库. 数据库连接字符串: string connStri ...
- Android 6.0 如何添加完整的系统服务(app-framework-kernel)
最近学习了如何在Android 6.0上添加一个系统服务,APP如何通过新增的系统服务访问底层驱动.在这学习过程中,收获颇多,并结合学习了<Embeded Android>--Karim ...
- Microsoft SQL Server学习(二)--数据库的语法
关于数据库的语法 创建数据库 样例 名词概念 编写数据库代码的注意事项 关于文件语法 实例代码 关于数据库的语法: 1.创建数据库 create database 数据库名 on primary (主 ...