3158: 千钧一发

题目:传送门

题解:

   这是一道很好的题啊...极力推荐

   细看题目:要求一个最大价值,那么我们可以转换成求损失的价值最小

   那很明显就是最小割的经典题目啊?!

   但是这里两个子集的分化并不明显...GG

   耐心一点,从题目的要求再入手:

   对于第二个要求,如果两点的a值都为偶数,那么肯定满足

   那如果两个数都为奇数的话,也必定满足要求一,证明如下:

   1、一个奇数的平方%4为1,一个偶数的平方%4为0

   2、两个奇数的平方和%4为2

   3、如果两个奇数的平方和是一个奇数的平方,那么%4应该为1,不符合

   4、如果两个奇数的平方和是一个偶数的平方,那么%4应该为0,不符合

   因此得证。

   这样子思考的话,两个子集的分化就较为明显了:

   st向a值为奇数的相连,a值为偶数的向ed相连,容量都为b值;这样子所形成的两个子集里面的点一定都是符合要求的。

   最后一步,也是最关键的一步:

   两个子集之间两两匹配,如果当前匹配的两个点是不符合要求的,就将这两个点相连,容量为无限大。

   有什么用呢?自己画几个图便很容易理解:

   这时候我们跑最小割的话,割出来的边就是损失价值的最小值

   用sum-最小割就是答案啊

代码:

 #include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#define qread(x) x=read()
using namespace std;
typedef long long LL;
const LL inf=;
LL n,st,ed,sum;
LL A[],B[];
inline LL read()
{
LL f=,x=;char ch;
while(ch<'' || ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>='' && ch<=''){x=x*+ch-'';ch=getchar();}
return f*x;
}
struct node
{
LL x,y,c,next,other;
}a[];LL len,last[];
void ins(LL x,LL y,LL c)
{
int k1,k2;
k1=++len;
a[len].x=x;a[len].y=y;a[len].c=c;
a[len].next=last[x];last[x]=len; k2=++len;
a[len].x=y;a[len].y=x;a[len].c=;
a[len].next=last[y];last[y]=len; a[k1].other=k2;
a[k2].other=k1;
}
LL list[],h[],head,tail;
bool bt_h()
{
memset(h,,sizeof(h));h[st]=;
list[]=st;head=;tail=;
while(head!=tail)
{
int x=list[head];
for(int k=last[x];k;k=a[k].next)
{
int y=a[k].y;
if(h[y]== && a[k].c)
{
h[y]=h[x]+;
list[tail++]=y;
}
}
head++;
}
if(h[ed])return true;
return false;
}
LL find_flow(LL x,LL flow)
{
if(x==ed)return flow;
LL s=,t;
for(int k=last[x];k;k=a[k].next)
{
int y=a[k].y;
if(h[y]==h[x]+ && a[k].c> && flow>s)
{
s+=t=find_flow(y,min(a[k].c,flow-s));
a[k].c-=t;a[a[k].other].c+=t;
}
}
if(s==)h[x]=;
return s;
}
LL gcd(LL a,LL b)
{
return a==?b:gcd(b%a,a);
}
bool pd(LL x,LL y)
{
LL T=x*x+y*y,t=sqrt(T);
if(t*t!=T)return true;
if(gcd(x,y)>)return true;
return false;
}
int main()
{
sum=;
qread(n);
len=;memset(last,,sizeof(last));
for(int i=;i<=n;i++)qread(A[i]);
for(int i=;i<=n;i++){qread(B[i]);sum+=B[i];}
st=n+;ed=st+;
for(int i=;i<=n;i++)
{
if(A[i]%==)ins(st,i,B[i]);
else ins(i,ed,B[i]);
}
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
if((A[i]%==) && (A[j]%==) && !pd(A[i],A[j]))
ins(i,j,inf);
LL ans=;
while(bt_h())ans+=find_flow(st,inf);
printf("%lld\n",sum-ans);
return ;
}

bzoj3158&3275: 千钧一发(最小割)的更多相关文章

  1. 【BZOJ3158】千钧一发 最小割

    [BZOJ3158]千钧一发 Description Input 第一行一个正整数N. 第二行共包括N个正整数,第 个正整数表示Ai. 第三行共包括N个正整数,第 个正整数表示Bi. Output 共 ...

  2. 【BZOJ-3275&3158】Number&千钧一发 最小割

    3275: Number Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 748  Solved: 316[Submit][Status][Discus ...

  3. bzoj 3158 千钧一发 —— 最小割

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3158 \( a[i] \) 是奇数则满足条件1,是偶数则显然满足条件2: 因为如果把两个奇数 ...

  4. BZOJ 3158 千钧一发 最小割

    分析: 偶数对满足条件2,所有奇数对满足条件1. 如果你能一眼看出这个规律,这道题就完成了一半. 我们只需要将数分为两类,a值为奇数,就从S向这个点连容量为b值的边,a值为偶数,就从这个点向T连容量为 ...

  5. BZOJ 3275: Number( 最小割 )

    S->每个奇数,每个偶数->T各连一条边, 容量为这个数字.然后不能同时选的两个数连容量为+oo的边. 总数-最大流即是答案. 因为满足a2+b2=c2的a,b一定是一奇一偶或者两个偶数, ...

  6. BZOJ3158 千钧一发(最小割)

    可以看做一些物品中某些互相排斥求最大价值.如果这是个二分图的话,就很容易用最小割了. 观察其给出的条件间是否有什么联系.如果两个数都是偶数,显然满足条件二:而若都是奇数,则满足条件一,因为式子列出来发 ...

  7. bzoj 3158 千钧一发(最小割)

    3158: 千钧一发 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 767  Solved: 290[Submit][Status][Discuss] ...

  8. bzoj 3275 Number(最小割)

    [题意] 给定n个数,要求选出一些数满足 1.存在c,a*a+b*b=c*c 2.gcd(a,b)=1  使得和最大. [思路] 二分图的最大权独立集(可以这么叫么QAQ 先拆点,对于不满足条件的两个 ...

  9. bzoj 3158: 千钧一发【最小割】

    这个条件非常妙啊,奇数和奇数一定满足1,因为\( (2a+1)^2+(2b+1)^2=4a^2+4a+4b^2+4b+2=2(2(a^2+a+b^2+b)+1) \)里面这个一定不是平方数因为除二后是 ...

随机推荐

  1. 记一次在广播(BroadcastReceiver)或服务(Service)里弹窗的“完美”实践

    事情是这样的,目前在做一个医疗项目,需要定时在某个时间段比如午休时间和晚上让我们的App休眠,那么这个时候在休眠时间段如果用户按了电源键点亮屏幕了,我们就需要弹出一个全屏的窗口去做一个人性化的提示,“ ...

  2. HDU 5187 zhx&#39;s contest(防爆__int64 )

    Problem Description As one of the most powerful brushes, zhx is required to give his juniors n probl ...

  3. HDU 1285--确定比赛名次【拓扑排序 &amp;&amp; 邻接表实现】

    确定比赛名次 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Sub ...

  4. sql server执行动态拼接sql(带传参数)和去掉小数点后0的函数

    1 exec sp_executesql N'SELECT 2 [Extent2].[Id] AS [Id], 3 [Extent2].[Name] AS [Name], 4 [Extent2].[D ...

  5. iOS开发—在@interface,@implementation和@property中变量的定义

    一直搞不懂在OC中变量在@interface和@implementation中有什么区别,定义@property又有什么不同,查了很多资料,总结如下: //ViewController.h @inte ...

  6. 英语影视台词---七、THE GREAT GATSBY QUOTES

    英语影视台词---七.THE GREAT GATSBY QUOTES 一.总结 一句话总结:了不起的盖茨比 1.“So we beat on, boats against the current, b ...

  7. BZOJ 3175 最大独立集

    思路: 最大独立集嘛 用nlogn的Dinic做 //By SiriusRen #include <queue> #include <cstdio> #include < ...

  8. Android eclipse 运行项目设置程序默认安装到SD卡

    Android eclipse 运行项目设置程序默认安装到SD卡  1.在Android手机启用USB调试功能 2.在Windows系统中打开命令提示符(开始菜单,选择运行,输入cmd回车即可),使用 ...

  9. SSRS故障排除

    1.SSRS部署到本地出现错误:为用户“Jimmy-PC\Jimmy”授予的权限不足,无法执行此操作.用户“Jimmy-PC\Jimmy”不具有所需的权限.请验证授予了足够的权限并且解决了 Windo ...

  10. C++之指针与引用,函数和数组

    ]={,,}; //ptr是指针,该指针类型是int[3] ]=&arr; cout << **ptr << endl;//第一次解指针时得到数组地址,第二次解指针取数 ...