题目链接:https://www.luogu.org/problemnew/show/P2568#sub

题目大意:

计算​$\sum_{x=1}^n\sum_{y=1}^n [gcd(x,y)==prime]​$

题解:

解法一:莫比乌斯反演套路题

其实这样就可以了,但是还可以优化一下子

设​​T=dp

整除分块就好了,其实这就和 yy的gcd 一样了

解法二:欧拉函数

考虑上面的第一个式子​可以化简成

tot是n以内质数的数量

这是因为考虑到每次都两次计算了​$\varphi(1)$

#include<algorithm>
#include<cstring>
#include<cstdio>
#include<iostream>
using namespace std;
typedef long long ll; const int N=1e7+;
int n,tot;
ll ans;
int prime[];
ll phi[N];
bool vis[N];
void get_phi()
{
phi[]=;
for (int i=;i<=n;i++)
{
if (!vis[i]) {phi[i]=i-;prime[++tot]=i;}
for (int j=;j<=tot&&i*prime[j]<=n;j++)
{
vis[i*prime[j]]=;
if (i%prime[j]) phi[i*prime[j]]=phi[i]*(prime[j]-);
else
{
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
}
}
for (int i=;i<=n;i++) phi[i]=phi[i-]+phi[i];
}
int main()
{
scanf("%d",&n);
get_phi();
//for (int i=1;i<=n;i++) printf("%d ",phi[i]);
for (int i=;i<=tot;i++)
{
ans+=phi[n/prime[i]];
}
printf("%lld\n",ans*-tot);
return ;
}

[luogu P2586] GCD 解题报告 (莫比乌斯反演|欧拉函数)的更多相关文章

  1. $BZOJ$2818 $gcd$ 莫比乌斯反演/欧拉函数

    正解:莫比乌斯反演/欧拉函数 解题报告: 传送门$QwQ$ 一步非常显然的变形,原式=$\sum_{d=1,d\in prim}^{n}\sum_{i=1}^{n}\sum_{j=1}^{n}[gcd ...

  2. luogu2658 GCD(莫比乌斯反演/欧拉函数)

    link 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 1<=N<=10^7 (1)莫比乌斯反演法 发现就是YY的GCD,左转YY的GCD ...

  3. 洛谷 - P1390 - 公约数的和 - 莫比乌斯反演 - 欧拉函数

    https://www.luogu.org/problemnew/show/P1390 求 $\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m} gcd(i,j) $ ...

  4. BZOJ2005:[NOI2010]能量采集(莫比乌斯反演,欧拉函数)

    Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得 ...

  5. HDU 6390 GuGuFishtion(莫比乌斯反演 + 欧拉函数性质 + 积性函数)题解

    题意: 给定\(n,m,p\),求 \[\sum_{a=1}^n\sum_{b=1}^m\frac{\varphi(ab)}{\varphi(a)\varphi(b)}\mod p \] 思路: 由欧 ...

  6. [jzoj 6084] [GDOI2019模拟2019.3.25] 礼物 [luogu 4916] 魔力环 解题报告(莫比乌斯反演+生成函数)

    题目链接: https://jzoj.net/senior/#main/show/6084 https://www.luogu.org/problemnew/show/P4916 题目: 题解: 注: ...

  7. BZOJ.2705.[SDOI2012]Longge的问题(莫比乌斯反演 欧拉函数)

    题目链接 \(Description\) 求\[\sum_{i=1}^n\gcd(i,n)\] \(Solution\) \[ \begin{aligned} \sum_{i=1}^n\gcd(i,n ...

  8. BZOJ4804 欧拉心算(莫比乌斯反演+欧拉函数+线性筛)

    一通套路后得Σφ(d)μ(D/d)⌊n/D⌋2.显然整除分块,问题在于怎么快速计算φ和μ的狄利克雷卷积.积性函数的卷积还是积性函数,那么线性筛即可.因为μ(pc)=0 (c>=2),所以f(pc ...

  9. Bzoj 2818: Gcd 莫比乌斯,分块,欧拉函数,线性筛

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 3241  Solved: 1437[Submit][Status][Discuss ...

随机推荐

  1. nodejs是一个平台,是平台

    node.js是用javascript来写服务器代码的平台

  2. 15 个经常使用的 SQL Server 高级语法

    1.case-end (详细的值) case后面有值,相当于c#中的switch case 注意:case后必须有条件,而且when后面必须是值不能为条件. -----------------case ...

  3. Ruby中写换行

    Ruby中写换行 print("Hello,\nRuby\n!\n") print("Hello, Ruby ! ") 这两个竟然是一样的:就是说,可以直接回车 ...

  4. [Angular] Provide Feedback to Progress Events with Angular’s HttpRequest Object

    In some cases your application might need to upload large amounts of data, such as files. Obviously ...

  5. 实战:percona-xtrabackup 2.1.9 for mysql 5.6.19

    ----1.编译安装percona-xtrabackup yum install cmake gcc gcc-c++ libaio libaio-devel automake autoconf bzr ...

  6. leveldb学习:sstable(2)

    block写入:block_builder block.h和.cc里定义了block的entry存储格式和restart,提供了entry的查找接口以及迭代器.那么怎样往写block里写entry呢? ...

  7. 弹性ScrollView,和下啦刷新的效果相似 实现下拉弹回和上拉弹回

    今天做了一个弹性ScrollView,和下啦刷新的效果类似,我想这个非常多需求都用的这样的效果 事实上这是一个自己定义的scrollView,上代码.这是我写在一个公共的组件包里的 package c ...

  8. BZOJ 1264: [AHOI2006]基因匹配Match 树状数组+DP

    1264: [AHOI2006]基因匹配Match Description 基因匹配(match) 卡卡昨天晚上做梦梦见他和可可来到了另外一个星球,这个星球上生物的DNA序列由无数种碱基排列而成(地球 ...

  9. 5分钟学会 CSS Grid 布局

    欢迎加入前端交流群交流知识&&获取视频资料:749539640 这是一篇快速介绍网站未来布局的文章. Grid 布局是网站设计的基础,CSS Grid 是创建网格布局最强大和最简单的工 ...

  10. [JZOJ5166] [NOIP2017模拟6.26卢学魔] 解题报告 (记忆化搜索|拓扑排序)

    题目链接: http://172.16.0.132/senior/#main/show/5166 题目: 题解: 这个没什么好讲的,就是注意生产者没人吃也不是食物链,这告诉我们要积累生物知识注意细节 ...