题目:

Description

There are only one case in each input file, the first line is a integer N (N ≤ 1,000,00) denoted the total operations executed by Mary.

Then following N lines, each line is one of the folling operations.

  • D L R : draw a segment [L, R], 1 ≤ L ≤  R ≤ 1,000,000,000.
  • C I : clear the ith added segment. It’s guaranteed that the every added segment will be cleared only once.
  • Q L R : query the number of segment sharing at least a common point with interval [L, R]. 1 ≤ L ≤ R ≤ 1,000,000,000.

Input

n

Then following n operations ...

Output

For each query, print the result on a single line ...

Sample Input

6
D 1 3
D 2 4
Q 2 3
D 2 4
C 2
Q 2 3

Sample Output

2
2   题意:给出三种操作:①画一条占据[L,R]区间的线段,②去掉前面画的第i条线段(保证合法),③查询一条占据区间[L,R]的线段与前面多少条线段至少有一个公共点。对于③操作,输出结果。
区间范围[1,1000000000],操作最多100000次。
  区间很大,但是操作相对比较少,所以可以先对坐标离散化,然后缩小了范围以后再对数据操作。
  怎样去统计有多少条线段覆盖了某一段?这里用的方法是统计线段的两个端点,用树状数组来记录。这里需要开两个树状数组,一个用来记录左端点,一个用来记录右端点,然后每一次求某一段[L,R]有多少条线段经过的话,我们可以先求出有多少条线段的左端点在R的左边,这里只要求前段和就可以了,然后我们再求一下有多少线段的右端点在L的左边,同样求一次和,然后相减就可以得到结果了。
  为什么可以这样做?首先是因为线段有两个端点,然后两次求和都直接排除了R右边的无关线段,而在L左边的线段的两个端点都在L的左边,所以就会先算了一次,然后再被减回去。 代码:
 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#define lowbit(x) (x & (-x))
#define MAX 100201
#define LL long long
using namespace std; typedef struct{
LL l,r,k;
char ch;
}Seg;
Seg s[MAX];
LL l[MAX<<],r[MAX<<];
vector<LL> d;
LL tot,no,N[MAX]; void add(LL p[],LL x,LL e){
for(;x<=tot;x+=lowbit(x)) p[x]+=e;
} LL query(LL p[],LL x){
LL ans=;
for(;x>;x-=lowbit(x)) ans+=p[x];
return ans;
} int main()
{
LL n,loc,ans;
//freopen("data.txt","r",stdin);
ios::sync_with_stdio(false);
while(cin>>n){
d.clear();
d.push_back(-(<<));
memset(l,,sizeof(l));
memset(r,,sizeof(r));
no=;
for(LL i=;i<n;i++){
cin>>s[i].ch;
if(s[i].ch=='C'){
cin>>s[i].k;
}else{
cin>>s[i].l>>s[i].r;
if(s[i].ch=='D') N[++no]=i;
d.push_back(s[i].l);
d.push_back(s[i].r);
}
}
sort(d.begin(),d.end());
d.erase(unique(d.begin(),d.end()),d.end());
tot = (LL)d.size()-;
for(LL i=;i<n;i++){
if(s[i].ch=='D'){
loc = lower_bound(d.begin(),d.end(),s[i].l) - d.begin();
add(l,loc,);
loc = lower_bound(d.begin(),d.end(),s[i].r) - d.begin();
add(r,loc,);
}else if(s[i].ch=='C'){
LL& e = N[s[i].k];
loc = lower_bound(d.begin(),d.end(),s[e].l) - d.begin();
add(l,loc,-);
loc = lower_bound(d.begin(),d.end(),s[e].r) - d.begin();
add(r,loc,-); }else{
loc = lower_bound(d.begin(),d.end(),s[i].r) - d.begin();
ans = query(l,loc);
loc = lower_bound(d.begin(),d.end(),s[i].l) - d.begin();
ans-= query(r,loc-);
cout<<ans<<endl;
}
}
//cout<<endl;
}
return ;
}

Crayon

ACDream - Crayon的更多相关文章

  1. ACdream 1214---矩阵连乘

    ACdream 1214---矩阵连乘 Problem Description You might have noticed that there is the new fashion among r ...

  2. acdream.LCM Challenge(数学推导)

     LCM Challenge Time Limit:1000MS     Memory Limit:64000KB     64bit IO Format:%lld & %llu Submit ...

  3. acdream.Triangles(数学推导)

    Triangles Time Limit:1000MS     Memory Limit:64000KB     64bit IO Format:%lld & %llu Submit Stat ...

  4. acdream.A Very Easy Triangle Counting Game(数学推导)

    A - A Very Easy Triangle Counting Game Time Limit:1000MS     Memory Limit:64000KB     64bit IO Forma ...

  5. acdream.Bet(数学推导)

    Bet Time Limit:1000MS     Memory Limit:64000KB     64bit IO Format:%lld & %llu Submit Status Pra ...

  6. acdream.郭式树(数学推导)

    郭式树 Time Limit:2000MS     Memory Limit:128000KB     64bit IO Format:%lld & %llu Submit Status Pr ...

  7. ACdream 1188 Read Phone Number (字符串大模拟)

    Read Phone Number Time Limit:1000MS     Memory Limit:64000KB     64bit IO Format:%lld & %llu Sub ...

  8. ACdream 1195 Sudoku Checker (数独)

    Sudoku Checker Time Limit:1000MS     Memory Limit:64000KB     64bit IO Format:%lld & %llu Submit ...

  9. ACdream 1112 Alice and Bob(素筛+博弈SG函数)

    Alice and Bob Time Limit:3000MS     Memory Limit:128000KB     64bit IO Format:%lld & %llu Submit ...

随机推荐

  1. Spring+Mybatis之登录功能demo

    其实工作之后就没有用过Spring+Mybatis的框架了,因为公司有一个自己开发的框架,讲道理,其实这个与Spring+Mybatis整合很是神似.当然性能上还是比不上Spring+Mybatis所 ...

  2. map集合遍历的五种方法

    package com.jackey.topic; import java.util.ArrayList;import java.util.HashMap;import java.util.Itera ...

  3. DCloud-MUI:utils

    ylbtech-DCloud-MUI:utils 1.返回顶部 1.init mui框架将很多功能配置都集中在mui.init方法中,要使用某项功能,只需要在mui.init方法中完成对应参数配置即可 ...

  4. How to add dependency on a Windows Service AFTER the service is installed

    his can also be done via an elevated command prompt using the sc command. The syntax is: sc config [ ...

  5. awk查找特定字段

    在一行中,查找字段包含exe的: ###########awk.awk######## { for(i=1;i<NF;i++) { if($i ~ /exe/) { print $i } } } ...

  6. 移动App服务端架构设计

      我从事手机app服务端开发现在已经是3个年头,自己也整理出了一套相对好用的服务架构,写出来,跟大家一起分享.如有不足,还请多指教. 一:基础流程图. 其实有一点还需要加上,就是对json的压缩和加 ...

  7. [转]rdlc报表中表达式的使用--switch和IIF范例

    本文转自:http://hi.baidu.com/oypx1234/item/5b35dec4e03a3ad697445266 =Switch( Fields!MLWHLO.Value = " ...

  8. 企业级分布式监控系统--zabbix

    目录 1.Zabbix简介 2.zabbix安装 3.工作原理 4.监控功能 5.监控系统架构 6.Zabbix系统架构 7.Zabbix组件构成 8.zabbix监控环境中基本概念 正文 回到顶部 ...

  9. 联想笋尖S90(S90-t 、S90-u)解锁BootLoader

    工具下载链接: http://pan.baidu.com/s/1eSgZuka 备用下载链接: http://pan.baidu.com/s/1dFKqSId 本篇教程,仅限于联想笋尖S90(S90- ...

  10. Android,加载离线Android API文档缓慢问题!

    解决方法:在host文件末添加如下信息! 0.0.0.0 www.googleapis.com 0.0.0.0 www.google.com 0.0.0.0 www.google-analytics. ...