原文:Win8 Metro(C#)数字图像处理--2.66FloodFill算法



[函数名称]

  洪水填充算法函数

WriteableBitmap FloodfillProcess(WriteableBitmap src,Point location, Color fillColor, int threshold)

2,以这个点为起点,将它压入栈中,假设我们要填充的颜色为A,则将该点颜色设置为A,然后判断它的四邻域像素,这里我们设置一个颜色阈值T,假设当前像素灰度值为P(x,y),四邻域像素为M(n),n=1,2,3,4,那么判断当前像素与四邻域像素的灰度差值D=|P-M|,如果D小于T, 那么我们将该像素M作为下一个种子点,压入栈中,否则继续判断。如图中黑色像素的四邻域内有一灰色点,与其差值小于T,则把它作为新的种子点压入栈中,继续判断。

3,当栈为空时,种子填充结束,否则重做步骤2。

[函数代码]

       /// <summary>
/// Flood fill.
/// </summary>
/// <param name="src">The source image.</param>
/// <param name="location">The start point to be filled.</param>
/// <param name="fillColor">The color to be filled.</param>
/// <param name="threshold">One parameter to control fill effect, from 0 to 255.</param>
/// <returns></returns>
public static WriteableBitmap FloodfillProcess(WriteableBitmap src,Point location, Color fillColor, int threshold)////洪水填充算法
{
if (src != null)
{
int w = src.PixelWidth;
int h = src.PixelHeight;
Stack<Point> fillPoints = new Stack<Point>(w * h);
int[,] mask = new int[w, h];
WriteableBitmap fillImage = new WriteableBitmap(w, h);
byte[] temp = src.PixelBuffer.ToArray();
byte[] tempMask = (byte[])temp.Clone();
Color backColor = Color.FromArgb(0,tempMask[(int)location.X * 4 + 2 + (int)location.Y * w * 4], tempMask[(int)location.X * 4 + 1 + (int)location.Y * w * 4], tempMask[(int)location.X * 4 + (int)location.Y * w * 4]);
int gray = (int)((backColor.R + backColor.G + backColor.B) / 3);
if (location.X < 0 || location.X >= w || location.Y < 0 || location.Y >= h) return null;
fillPoints.Push(new Point(location.X, location.Y));
while (fillPoints.Count > 0)
{
Point p = fillPoints.Pop();
mask[(int)p.X, (int)p.Y] = 1;
tempMask[4 * (int)p.X + (int)p.Y * w*4] = (byte)fillColor.B;
tempMask[4 * (int)p.X + 1 + (int)p.Y * w*4] = (byte)fillColor.G;
tempMask[4 * (int)p.X + 2 +(int) p.Y * w*4] = (byte)fillColor.R;
if (p.X > 0 && (Math.Abs(gray - (int)((tempMask[4 * ((int)p.X - 1) + (int)p.Y * w * 4] + tempMask[4 * ((int)p.X - 1) + 1 + (int)p.Y * w * 4] + tempMask[4 * ((int)p.X - 1) + 2 + (int)p.Y * w * 4]) / 3)) < threshold) && (mask[(int)p.X - 1, (int)p.Y] != 1))
{
tempMask[4 * ((int)p.X - 1) + (int)p.Y * w*4] = (byte)fillColor.B;
tempMask[4 * ((int)p.X - 1) + 1 + (int)p.Y * w*4] = (byte)fillColor.G;
tempMask[4 * ((int)p.X - 1) + 2 + (int)p.Y * w*4] = (byte)fillColor.R;
fillPoints.Push(new Point(p.X - 1, p.Y));
mask[(int)p.X - 1, (int)p.Y] = 1;
}
if (p.X < w - 1 && (Math.Abs(gray - (int)((tempMask[4 * ((int)p.X + 1) + (int)p.Y * w * 4] + tempMask[4 * ((int)p.X + 1) + 1 + (int)p.Y * w * 4] + tempMask[4 * ((int)p.X + 1) + 2 + (int)p.Y * w * 4]) / 3)) < threshold) && (mask[(int)p.X + 1, (int)p.Y] != 1))
{
tempMask[4 * ((int)p.X + 1) + (int)p.Y * w * 4] = (byte)fillColor.B;
tempMask[4 * ((int)p.X + 1) + 1 + (int)p.Y * w * 4] = (byte)fillColor.G;
tempMask[4 * ((int)p.X + 1) + 2 + (int)p.Y * w * 4] = (byte)fillColor.R;
fillPoints.Push(new Point(p.X + 1, p.Y));
mask[(int)p.X + 1, (int)p.Y] = 1;
}
if (p.Y > 0 && (Math.Abs(gray - (int)((tempMask[4 * (int)p.X + ((int)p.Y - 1) * w * 4] + tempMask[4 * (int)p.X + 1 + ((int)p.Y - 1) * w * 4] + tempMask[4 * (int)p.X + 2 + ((int)p.Y - 1) * w * 4]) / 3)) < threshold) && (mask[(int)p.X, (int)p.Y - 1] != 1))
{
tempMask[4 * (int)p.X + ((int)p.Y - 1) * w * 4] = (byte)fillColor.B;
tempMask[4 * (int)p.X + 1 + ((int)p.Y - 1) * w * 4] = (byte)fillColor.G;
tempMask[4 * (int)p.X + 2 + ((int)p.Y - 1) * w * 4] = (byte)fillColor.R;
fillPoints.Push(new Point(p.X, p.Y - 1));
mask[(int)p.X, (int)p.Y - 1] = 1;
}
if (p.Y < h - 1 && (Math.Abs(gray - (int)((tempMask[4 * (int)p.X + ((int)p.Y + 1) * w * 4] + tempMask[4 * (int)p.X + 1 + ((int)p.Y + 1) * w * 4] + tempMask[4 * (int)p.X + 2 + ((int)p.Y + 1) * w * 4]) / 3)) < threshold) && (mask[(int)p.X, (int)p.Y + 1] != 1))
{
tempMask[4 * (int)p.X + ((int)p.Y + 1) * w * 4] = (byte)fillColor.B;
tempMask[4 * (int)p.X + 1 + ((int)p.Y + 1) * w * 4] = (byte)fillColor.G;
tempMask[4 * (int)p.X + 2 + ((int)p.Y + 1) * w * 4] = (byte)fillColor.R;
fillPoints.Push(new Point(p.X, p.Y + 1));
mask[(int)p.X, (int)p.Y + 1] = 1;
}
}
fillPoints.Clear();
temp = (byte[])tempMask.Clone();
Stream sTemp = fillImage.PixelBuffer.AsStream();
sTemp.Seek(0, SeekOrigin.Begin);
sTemp.Write(temp, 0, w * 4 * h);
return fillImage;
}
else
{
return null;
}
}

最后,分享一个专业的图像处理网站(微像素),里面有很多源代码下载:

Win8 Metro(C#)数字图像处理--2.66FloodFill算法的更多相关文章

  1. Win8 Metro(C#)数字图像处理--2.75灰度图像的形态学算法

    原文:Win8 Metro(C#)数字图像处理--2.75灰度图像的形态学算法 前面章节中介绍了二值图像的形态学算法,这里讲一下灰度图的形态学算法,主要是公式,代码略. 1,膨胀算法 2,腐蚀算法 3 ...

  2. Win8 Metro(C#)数字图像处理--2.64图像高斯滤波算法

    原文:Win8 Metro(C#)数字图像处理--2.64图像高斯滤波算法  [函数名称]   高斯平滑滤波器      GaussFilter(WriteableBitmap src,int r ...

  3. Win8 Metro(C#)数字图像处理--2.60部分彩色保留算法

    原文:Win8 Metro(C#)数字图像处理--2.60部分彩色保留算法  [函数名称]   部分彩色保留函数       WriteableBitmap PartialcolorProcess ...

  4. Win8 Metro(C#)数字图像处理--2.48Canny边缘检测算法

    原文:Win8 Metro(C#)数字图像处理--2.48Canny边缘检测算法  [算法说明] Canny边缘检测算法可以分为4步:高斯滤波器平滑处理.梯度计算.非极大值抑制.双阈值边缘检 测和 ...

  5. Win8 Metro(C#)数字图像处理--2.49Zhang二值图像细化算法

    原文:Win8 Metro(C#)数字图像处理--2.49Zhang二值图像细化算法  [函数名称]   二值图像细化算法      WriteableBitmap ThinningProcess ...

  6. Win8 Metro(C#)数字图像处理--2.44图像油画效果算法

    原文:Win8 Metro(C#)数字图像处理--2.44图像油画效果算法  [函数名称]   图像油画效果      OilpaintingProcess(WriteableBitmap src ...

  7. Win8 Metro(C#)数字图像处理--2.45图像雾化效果算法

    原文:Win8 Metro(C#)数字图像处理--2.45图像雾化效果算法 [函数名称]   图像雾化         AtomizationProcess(WriteableBitmap src,i ...

  8. Win8 Metro(C#)数字图像处理--2.47人脸红眼去除算法

    原文:Win8 Metro(C#)数字图像处理--2.47人脸红眼去除算法  [函数名称]   红眼去除     RedeyeRemoveProcess(WriteableBitmap src) ...

  9. Win8 Metro(C#)数字图像处理--2.40二值图像轮廓提取算法

    原文:Win8 Metro(C#)数字图像处理--2.40二值图像轮廓提取算法  [函数名称]   二值图像轮廓提取         ContourExtraction(WriteableBitm ...

随机推荐

  1. DWG 对象与ArcGIS 要素的强制对应关系

    转自原文DWG 对象与ArcGIS 要素的强制对应关系 DWG 对象与ArcGIS 要素的强制对应关系如下: Feature type DWG object types   Point Point, ...

  2. 【hdu 2594】Simpsons’ Hidden Talents

    Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission(s) ...

  3. 【Unity Shaders】Lighting Models —— 灯型号Lit Sphere

    考<Unity Shaders and Effects Cookbook>一书(感谢原书作者),同一时候会加上一点个人理解或拓展. 这里是本书全部的插图.这里是本书所需的代码和资源(当然你 ...

  4. 简单易用的动画animations

    _tableView_selc.frame=CGRectMake(20, , 20,20); [UIView animateWithDuration:0.3f animations:^{ _table ...

  5. BZOJ 1509 逃学的小孩 - 树型dp

    传送门 题目大意: 在一棵树中, 每条边都有一个长度值, 现要求在树中选择 3 个点 X.Y. Z , 满足 X 到 Y 的距离不大于 X 到 Z 的距离, 且 X 到 Y 的距离与 Y 到 Z 的距 ...

  6. 【BZOJ 1019】 [SHOI2008]汉诺塔

    [题目链接]:http://www.lydsy.com/JudgeOnline/problem.php?id=1019 [题意] [题解] 这个题解讲得很清楚了 http://blog.sina.co ...

  7. 【t014】拯数

    [题目链接]:http://noi.qz5z.com/viewtask.asp?id=t014 [题意] [题解] 这个锁的序列,如果把末尾的0去掉; 然后再倒过来; 那么就是这个序列对应的格雷码了; ...

  8. OpenCV中CvSVM部分函数解读

    CvSVM::predict函数解析:无论是Mat接口还是CvMat接口终于都是通过指针的形式调用的.也就是终于都是调用的下面函数实现的 float CvSVM::predict( const flo ...

  9. react里执行shouldComponentUpdate时返回false的后果

    大家都知道生命周期shouldComponentUpdate返回false时,不会进行后续的渲染,那这个时候state是什么情况呢.我们看一下demo class Toggle extends Rea ...

  10. Vue中v-for不绑定key会怎样

    Vue的v-for不绑定key,默认行为和绑定key="index"是差不多的,官方没有默认这种行为的情况下,会导致所有列表DOM重新渲染.key="index" ...