链接:传送门

题意:给一个长为 n 的串,问是否有子串的和是 m 的倍数。

思路:典型鸽巢定理的应用,但是这里 n,m 的大小关系是不确定的,如果 n >= m 根据定理可以很简单的判定是一定有解的,当 n < m 的时候就需要去具体寻找一下了,这里构造一个新串 Si = a1 + a2 + a3 + ...... + ai ,如果新串 Si % m = 0 自然就yes了,对于任意一个串 Si % m 的余数范围在 [ 0 , m - 1 ] ,如果出现两个余数相同的新串 S 则就能构成 ( Sj - Si ) % m = 0 ( i < j )


/*************************************************************************
> File Name: hdu5776.cpp
> Author: WArobot
> Blog: http://www.cnblogs.com/WArobot/
> Created Time: 2017年04月29日 星期六 23时00分52秒
************************************************************************/ #include<bits/stdc++.h>
using namespace std; const int maxn = 100010;
int a[maxn] , vis[maxn];
int t,n,m;
int S;
int main(){
scanf("%d",&t);
while(t--){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++) scanf("%d",a+i);
if(n>=m) printf("YES\n");
else{
memset(vis,0,sizeof(vis));
int ok = 0;
S = 0;
for(int i=1;i<=n;i++){
S = ( S + a[i] ) % m;
if(S==0) { ok = 1; break; }
if(vis[S]){ ok = 1; break; }
vis[S] = i;
}
if(ok) printf("YES\n");
else printf("NO\n");
}
}
return 0;
}

HDU 5776 sum( 鸽巢定理简单题 )的更多相关文章

  1. POJ 2356 Find a multiple( 鸽巢定理简单题 )

    链接:传送门 题意:题意与3370类似 注意:注意输出就ok,输出的是集合的值不是集合下标 /***************************************************** ...

  2. POJ 3370 Halloween treats( 鸽巢原理简单题 )

    链接:传送门 题意:万圣节到了,有 c 个小朋友向 n 个住户要糖果,根据以往的经验,第i个住户会给他们a[ i ]颗糖果,但是为了和谐起见,小朋友们决定要来的糖果要能平分,所以他们只会选择一部分住户 ...

  3. poj2356Find a multiple——鸽巢定理运用

    题目:http://poj.org/problem?id=2356 N个数,利用鸽巢定理可知应有N+1个前缀和(包括0),因此其%N的余数一定有重复: 同余的两个前缀和之差一定为N的倍数,据此得出答案 ...

  4. hdu 3183 rmq+鸽巢原理

    题目大意: 给你一个数字字符串序列,给你要求删掉的数字个数m,删掉m个数使的剩下的数字字符串的之最小.并输出这个数字: 基本思路; 这题解法有很多,贪心,rmq都可以,这里选择rmq,因为很久没有写r ...

  5. HDU 5776 sum (BestCoder Round #85 A) 简单前缀判断+水题

    分析:就是判断简单的前缀有没有相同,注意下自身是m的倍数,以及vis[0]=true; #include <cstdio> #include <cstdlib> #includ ...

  6. HDU 5776 sum (思维题)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5776 题目让你求是否有区间的和是m的倍数. 预处理前缀和,一旦有两个数模m的值相同,说明中间一部分连续 ...

  7. HDU 5776 sum (模拟)

    sum 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5776 Description Given a sequence, you're asked ...

  8. HDU 5776 sum(抽屉原理)

    题目传送:http://acm.hdu.edu.cn/showproblem.php?pid=5776 Problem Description Given a sequence, you're ask ...

  9. HDU 4627 The Unsolvable Problem(简单题)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4627 题目大意:给定一个整数n(2 <= n <= 109),满足a+b=n并且[a,b] ...

随机推荐

  1. 微信小程序 Image 图片实现宽度100%,高度自适应

    做法如下: 样式设置宽度100%, .img{ width:100%;} 添加属性 mode="widthFix", <image class="img" ...

  2. phpEXCEL如何设置单元格格式为百分比

    $objExcel->getActiveSheet()->getStyle('C9')->getNumberFormat()->setFormatCode(PHPExcel_S ...

  3. SpringBoot 对静态资源的映射规则

    一.所有 /webjars/** ,都去 classpath:/META-INF/resources/webjars/ 找资源 webjars:以jar包的方式引入静态资源,如下:引入 jquery ...

  4. C++ "#"的作用和用法

    本系列文章由 @yhl_leo 出品,转载请注明出处. 文章链接: http://blog.csdn.net/yhl_leo/article/details/48879093 1 #和##的作用和用法 ...

  5. Matlab中的函数句柄@

    本系列文章由 @yhl_leo 出品,转载请注明出处. 文章链接: http://blog.csdn.net/yhl_leo/article/details/50699990 @是Matlab中的句柄 ...

  6. 洛谷—— P1457 城堡 The Castle

    https://www.luogu.org/problem/show?pid=1457 题目描述 我们憨厚的USACO主人公农夫约翰(Farmer John)以无法想象的运气,在他生日那天收到了一份特 ...

  7. Qt Quick 之 QML 与 C++ 混合编程具体解释

    Qt Quick 技术的引入.使得你能够高速构建 UI ,具有动画.各种绚丽效果的 UI 都不在话下.但它不是万能的.也有非常多局限性,原来 Qt 的一些技术,比方低阶的网络编程如 QTcpSocke ...

  8. Ruby按照换行符进行分割

    Ruby按照换行符进行分割 string.split(/\n/)

  9. Android监听程序自身被卸载

    概述: 假设不是一些特殊的情况,我想大家非常少会接触到这个需求.事实上Android的Java部分没有提供对应的接口.这里须要去调用C的代码,也就是说要写JNI了.关于JNI的初识.大家能够去參考我博 ...

  10. 2016.03.28,英语,《Vocabulary Builder》Unit 07

    vis: comes from a Latin verb meaning 'see'. vision: ['vɪʒn] n. 视觉,先见之明,光景,视力,眼力,幻想,影像 vt. 幻想. ; vid- ...