[LOJ6433]最大前缀和
深刻感受到自己的水平和机房里的其他人相差甚远,他们都是随手秒这个题的...
$n$很小,考虑状压DP
当一个序列在某个位置取到最大前缀和后,意味着如果把后面的数抽出来单独成序列,那么它的每个前缀和都$\leq0$,要不然就可以取到更大的前缀和了
令$s_i$表示状态为$i$的数的和,$f_i$表示选状态为$i$的数且最大前缀和$=s_i$的方案数,$g_i$表示选状态为$i$的数且每个前缀和都$\leq0$的方案数,那么答案就是$\sum\limits_is_if_ig_{mx-i}$
如果$s_i\gt0$,那么我们在$i$这个状态代表的序列前面加任何一个数,新的序列的最大前缀和肯定是总和,所以我们有转移$f_{j\cup i}\gets f_i(i\cap j=\varnothing)$
如果$s_i\leq0$,那么我们在$i$这个状态代表的序列末尾删除一个数得到的序列仍然满足条件,所以我们有转移$g_i\gets g_{i-j}(i\cap j\ne\varnothing)$
总时间复杂度$O(n2^n)$
#include<stdio.h> const int maxn=1048576,mod=998244353; typedef long long ll; int a[20],s[maxn],f[maxn],g[maxn]; void inc(int&a,int b){(a+=b)%=mod;} int main(){ int n,i,j,mx,ans; scanf("%d",&n); for(i=0;i<n;i++)scanf("%d",a+i); mx=1<<n; for(i=0;i<mx;i++){ for(j=0;j<n;j++){ if(i>>j&1)s[i]+=a[j]; } } g[0]=1; for(i=0;i<mx;i++){ if(s[i]<=0){ for(j=0;j<n;j++){ if(i>>j&1)inc(g[i],g[i^(1<<j)]); } } } for(i=0;i<n;i++)f[1<<i]=1; for(i=0;i<mx;i++){ if(s[i]>0){ for(j=0;j<n;j++){ if(~i>>j&1)inc(f[i^(1<<j)],f[i]); } } } ans=0; for(i=0;i<mx;i++)inc(ans,s[i]*(ll)f[i]%mod*(ll)g[(mx-1)^i]%mod); inc(ans,mod); printf("%d",ans); }
[LOJ6433]最大前缀和的更多相关文章
- 「PKUWC2018/PKUSC2018」试题选做
「PKUWC2018/PKUSC2018」试题选做 最近还没想好报THUSC还是PKUSC,THU发我的三类约(再来一瓶)不知道要不要用,甚至不知道营还办不办,协议还有没有用.所以这些事情就暂时先不管 ...
- 【LOJ6433】【PKUSC2018】最大前缀和
[LOJ6433][PKUSC2018]最大前缀和 题面 题目描述 小 C 是一个算法竞赛爱好者,有一天小 C 遇到了一个非常难的问题:求一个序列的最大子段和. 但是小 C 并不会做这个题,于是小 C ...
- LOJ6433 [PKUSC2018] 最大前缀和 【状压DP】
题目分析: 容易想到若集合$S$为前缀时,$S$外的所有元素的排列的前缀是小于$0$的,DP可以做到,令排列前缀个数小于0的是g[S]. 令f[S]表示$S$是前缀,转移可以通过在前面插入元素完成. ...
- 【PKUSC2018】【loj6433】最大前缀和 状压dp
这题吼啊... 然而还是想了$2h$,写了$1h$. 我们发现一个性质:若一个序列$p$能作为前缀和,那么在序列$p$中,包含序列$p$最后一个数的所有子序列必然都是非负的. 那么,我们 令$f[i] ...
- [LOJ6433] [PKUSC2018] 最大前缀和
题目链接 LOJ:https://loj.ac/problem/6433 Solution 注意到最大前缀要满足什么性质,假设序列\(a[1..n]\)的最大前缀是\(s_x\),那么显然要满足所有\ ...
- [LOJ6433][PKUSC2018]最大前缀和:状压DP
分析 我们让每个数列在第一个取到最大前缀和的位置被统计到. 假设一个数列在\(pos\)处第一次取到最大前缀和,分析性质,有: 下标在\([1,pos]\)之间的数形成的数列的每个后缀和(不包括整个数 ...
- LOJ#6433. 「PKUSC2018」最大前缀和 状压dp
原文链接https://www.cnblogs.com/zhouzhendong/p/LOJ6433.html 题解 枚举一个集合 S ,表示最大前缀和中包含的元素集为 S ,然后求出有多少个排列是这 ...
- HDU1671——前缀树的一点感触
题目http://acm.hdu.edu.cn/showproblem.php?pid=1671 题目本身不难,一棵前缀树OK,但是前两次提交都没有成功. 第一次Memory Limit Exceed ...
- 【手记】注意BinaryWriter写string的小坑——会在string前加上长度前缀length-prefixed
之前以为BinaryWriter写string会严格按构造时指定的编码(不指定则是无BOM的UTF8)写入string的二进制,如下面的代码: //将字符串"a"写入流,再拿到流的 ...
随机推荐
- 于是他错误的点名开始了 [Trie]
于是他错误的点名开始了 题目背景 XS中学化学竞赛组教练是一个酷爱炉石的人. 他会一边搓炉石一边点名以至于有一天他连续点到了某个同学两次,然后正好被路过的校长发现了然后就是一顿欧拉欧拉欧拉(详情请见已 ...
- centos网络配置之桥接模式
一:前沿 来这家公司好久了,都没有开始写博客,都是积累着,都没有去写,今天实在是天激动了,我的虚拟机在配置好了之后折腾了一天都没有折腾出来可以上网,今天来了继续折腾,然后我该ip,改连接方式,我擦,终 ...
- bzoj2683/4066 简单题
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=2683 http://www.lydsy.com/JudgeOnline/problem.ph ...
- OOP第三次上机
上机问题 T1 CSet 还是熟悉的CSet,只是多了个构造函数以及收缩空间. T2 SingleTon 单例问题. 用一个指针保存唯一的实例,用户无法在外部直接新建实例,只能使用外部接口(函数),函 ...
- python3 匿名函数,map/reduce/filter等函数结合应用
匿名函数就是不需要显式的指定函数 # 平方函数 def func1(x): return x**2 print(func1) # 平方函数匿名函数写法 func2=lambda x:x**2 prin ...
- Linux下的两个经典宏定义【转】
转自:http://www.linuxidc.com/Linux/2015-07/120014.htm 本文首先介绍Linux下的经典宏定义,感受极客的智慧,然后根据该经典定义为下篇文章作铺垫. of ...
- appium的使用
这套教程年久失修,问题的人也比较多,于是,我重新整理了一套appium入门教程. appium新手入门(1)—— appium介绍 appium新手入门(2)—— 安装 Android SDK app ...
- C#字节数组的常用解码处理方法
在某些情况下,比如说串口通信或者读取二进制的文件,通常会得到一个byte数组形式的数据. 然而对于这个数据处理常常令人苦恼,因为通常通信情况下,并不是一个字节代表一个字符或者某个数据,而是数据夹杂在字 ...
- 2017/3/7 值得"纪念"的错误
使用viewpager和fragment做个能左右滑动的效果,结果怎么弄怎么有问题,先是怀疑什么viewPager维护刷新内部fragment什么的,又是在FragmentPageAdapter的ge ...
- python基础之程序交互与数据类型
一.程序交互 1.什么是程序交互? name=input('输入用户名:') #无论用户输入何种内容,input都会存成字符串格式 print(name) 2.为啥要有程序交互? 让计算机能够模拟人, ...