今天所说的就是常用的解决最短路径问题最后一个算法,这个算法同样是求连通图中单源点到其他结点的最短路径,功能和Bellman-Ford算法大致相同,可以求有负权的边的图,但不能出现负回路。但是SPFA算法的时间复杂度是O(kE),k是常数,平均值为2,E是边数。我们可以看到SPFA算法的时间复杂度远远低于Bellman-Ford算法,因此常常选择此算法而不是Bellman算法(虽然其复杂度没有被严格的数学证明)。

简单的说SPFA是将Bellman-Ford算法结合了队列的实现,从而减少了很多冗余的计算。

文字描述如下:初始时将起点加入队列。每次从队列中取出一个元素,并对所有与它相邻的点进行修改,若某个相邻的点修改成功,则将其入队。直到该队列为空时算法结束。

伪代码描述:

dis[i]记录起点s到i的最短路径,m[i][j]记录连接i、j边的长度,pre[v]记录前驱结点。

t[1..n]为队列,头指针是head,尾指针为tail。

布尔数组 e[1..n]记录一个点是否现在存在在队列当中。

初始化:dis[s]=0,dis[v]=∞,memset(e,false,sizeof(e));

起点入队t[1]=s;head=0;tail=1;e[s]=true;

do

{

1.头指针向下移,取出点u。

2.e[u]=false;已经被取出队列。

3.for所有与u相连的点v

if(dis[v]>dis[u]+m[u][v]){

dis[v]=dis[u]+m[u][v];

pre[v]=u;

if(!e[v])// v不在队列中,v入队

{

尾指针下移,v入队;

e[v]=true;

}

}

}while(head<tail);

注意点:

1.因为队列的大小不可知并且容易超过预计,所以采用循环队列的思想,即队列长度不需要开的很大。

2.算法感觉和广搜类似,但是与广搜不同的是,广搜出列的元素不会在入列,而这里会根据需要一直调整队列中的元素。

具体代码将在下一题中运用到,这里就不专门写了。

3.在枚举所有点的那一步中,前提使用邻接表储存的图之后在枚举才行,否则时间复杂度将没有提升。

最短路径算法 4.SPFA算法(1)的更多相关文章

  1. 数据结构与算法--最短路径之Bellman算法、SPFA算法

    数据结构与算法--最短路径之Bellman算法.SPFA算法 除了Floyd算法,另外一个使用广泛且可以处理负权边的是Bellman-Ford算法. Bellman-Ford算法 假设某个图有V个顶点 ...

  2. 最短路径——Bellman-Ford算法以及SPFA算法

    说完dijkstra算法,有提到过朴素dij算法无法处理负权边的情况,这里就需要用到Bellman-Ford算法,抛弃贪心的想法,牺牲时间的基础上,换取负权有向图的处理正确. 单源最短路径 Bellm ...

  3. Bellman-Ford算法与SPFA算法详解

    PS:如果您只需要Bellman-Ford/SPFA/判负环模板,请到相应的模板部分 上一篇中简单讲解了用于多源最短路的Floyd算法.本篇要介绍的则是用与单源最短路的Bellman-Ford算法和它 ...

  4. Bellman-ford算法、SPFA算法求解最短路模板

    Bellman-ford 算法适用于含有负权边的最短路求解,复杂度是O( VE ),其原理是依次对每条边进行松弛操作,重复这个操作E-1次后则一定得到最短路,如果还能继续松弛,则有负环.这是因为最长的 ...

  5. 最短路径算法之四——SPFA算法

    SPAF算法 求单源最短路的SPFA算法的全称是:Shortest Path Faster Algorithm,该算法是西南交通大学段凡丁于1994年发表的. 它可以在O(kE)的时间复杂度内求出源点 ...

  6. 图论-最短路径--3、SPFA算法O(kE)

    SPFA算法O(kE) 主要思想是:     初始时将起点加入队列.每次从队列中取出一个元素,并对所有与它相邻的点进行修改,若某个相邻的点修改成功,则将其入队.直到队列为空时算法结束.     这个算 ...

  7. 题目1008:最短路径问题(SPFA算法)

    问题来源 http://ac.jobdu.com/problem.php?pid=1008 问题描述 给定一个G(V,E)有向图,起点s以及终点t,求最短路径. 问题分析 典型的单源最短路径问题,可以 ...

  8. 最短路径问题---Floyed(弗洛伊德算法),dijkstra算法,SPFA算法

    在NOIP比赛中,如果出图论题最短路径应该是个常考点. 求解最短路径常用的算法有:Floyed算法(O(n^3)的暴力算法,在比赛中大概能过三十分) dijkstra算法 (堆优化之后是O(MlogE ...

  9. [hihoCoder] #1093 : 最短路径·三:SPFA算法

    时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 万圣节的晚上,小Hi和小Ho在吃过晚饭之后,来到了一个巨大的鬼屋! 鬼屋中一共有N个地点,分别编号为1..N,这N个地点之 ...

随机推荐

  1. 一个程序猿试用有道云笔记VIP功能体验

    熟悉我的朋友应该知道,我有一个微信公众号,叫做"汪子熙", 我会定期在上面推送技术文章. 而我绝大多数技术文章都是在每天上下班的地铁上用手机写的,然后到家后同步到电脑上,进行发表. ...

  2. bootstrapTable表格表头换行

    使用bootstrapTable组件,达到表头中有一格显示两行,其他表头均为一行,效果图如下: 代码: { field : 'pay_date', title : '已还款完成时间', valign: ...

  3. ACM-ICPC (10/12)

    01分数规划 背景:根据楼教主回忆,曾经在一场比赛中秒掉了一道最优比例生成树问题,导致很多人跟风失败,最终悲剧. 什么是01分数规划呢? 这样的等式求最大,最小即为01分数规划.  如果你不知道该如何 ...

  4. 【[SCOI2010]生成字符串】

    \(n=m\)时候经典的卡特兰 那\(n!=m\)呢,还是按照卡特兰的方式来推 首先总情况数就是\(\binom{n+m}{n}\),在\(n+m\)个里选择\(n\)个\(1\) 显然有不合法的情况 ...

  5. react中 props,state与render函数的关系

    我们很明显的能够感受到,react是一门数据驱动的框架,当数据发生变化,页面就会自动发生变化,他背后的原理是怎么样子的呢 比如todolist例子里面,inputValue变了,框里面的内容就会自动变 ...

  6. pooling、relu、convolution的反向传播

    1.pooling的反向传播: https://blog.csdn.net/qq_21190081/article/details/72871704 pooling反向传播的原则:pooling的值和 ...

  7. ROS indigo安装完成后运行小乌龟示例程序

    安装ROS成功后,在Beginner Tutorials中有一个简单的示例程序. 在Terminal中运行以下命令:$ roscore新开一个terminal,运行以下命令,打开小乌龟窗口:$ ros ...

  8. SpringBoot非官方教程 | 第八篇:springboot整合mongodb

    转载请标明出处: 原文首发于:https://www.fangzhipeng.com/springboot/2017/07/11/springboot8-mongodb/ 本文出自方志朋的博客 这篇文 ...

  9. c# 一种缓存模板

    在很多项目中,尤其是服务端,我们需要临时缓存一些数据,对于完整的我就不说了.主要的保持方法有: 1.大型数据库 2.缓存组件 3.文件(按照自己定义的格式存储) 4.一些缓存数据库(sqlte,h2, ...

  10. shell的命令格式

    参考高峻峰 著 循序渐进Linux(第二版) command [options] [arguments] command:表示命令的名称 options:表示命令的选项 arguments:表示命令的 ...