今天所说的就是常用的解决最短路径问题最后一个算法,这个算法同样是求连通图中单源点到其他结点的最短路径,功能和Bellman-Ford算法大致相同,可以求有负权的边的图,但不能出现负回路。但是SPFA算法的时间复杂度是O(kE),k是常数,平均值为2,E是边数。我们可以看到SPFA算法的时间复杂度远远低于Bellman-Ford算法,因此常常选择此算法而不是Bellman算法(虽然其复杂度没有被严格的数学证明)。

简单的说SPFA是将Bellman-Ford算法结合了队列的实现,从而减少了很多冗余的计算。

文字描述如下:初始时将起点加入队列。每次从队列中取出一个元素,并对所有与它相邻的点进行修改,若某个相邻的点修改成功,则将其入队。直到该队列为空时算法结束。

伪代码描述:

dis[i]记录起点s到i的最短路径,m[i][j]记录连接i、j边的长度,pre[v]记录前驱结点。

t[1..n]为队列,头指针是head,尾指针为tail。

布尔数组 e[1..n]记录一个点是否现在存在在队列当中。

初始化:dis[s]=0,dis[v]=∞,memset(e,false,sizeof(e));

起点入队t[1]=s;head=0;tail=1;e[s]=true;

do

{

1.头指针向下移,取出点u。

2.e[u]=false;已经被取出队列。

3.for所有与u相连的点v

if(dis[v]>dis[u]+m[u][v]){

dis[v]=dis[u]+m[u][v];

pre[v]=u;

if(!e[v])// v不在队列中,v入队

{

尾指针下移,v入队;

e[v]=true;

}

}

}while(head<tail);

注意点:

1.因为队列的大小不可知并且容易超过预计,所以采用循环队列的思想,即队列长度不需要开的很大。

2.算法感觉和广搜类似,但是与广搜不同的是,广搜出列的元素不会在入列,而这里会根据需要一直调整队列中的元素。

具体代码将在下一题中运用到,这里就不专门写了。

3.在枚举所有点的那一步中,前提使用邻接表储存的图之后在枚举才行,否则时间复杂度将没有提升。

最短路径算法 4.SPFA算法(1)的更多相关文章

  1. 数据结构与算法--最短路径之Bellman算法、SPFA算法

    数据结构与算法--最短路径之Bellman算法.SPFA算法 除了Floyd算法,另外一个使用广泛且可以处理负权边的是Bellman-Ford算法. Bellman-Ford算法 假设某个图有V个顶点 ...

  2. 最短路径——Bellman-Ford算法以及SPFA算法

    说完dijkstra算法,有提到过朴素dij算法无法处理负权边的情况,这里就需要用到Bellman-Ford算法,抛弃贪心的想法,牺牲时间的基础上,换取负权有向图的处理正确. 单源最短路径 Bellm ...

  3. Bellman-Ford算法与SPFA算法详解

    PS:如果您只需要Bellman-Ford/SPFA/判负环模板,请到相应的模板部分 上一篇中简单讲解了用于多源最短路的Floyd算法.本篇要介绍的则是用与单源最短路的Bellman-Ford算法和它 ...

  4. Bellman-ford算法、SPFA算法求解最短路模板

    Bellman-ford 算法适用于含有负权边的最短路求解,复杂度是O( VE ),其原理是依次对每条边进行松弛操作,重复这个操作E-1次后则一定得到最短路,如果还能继续松弛,则有负环.这是因为最长的 ...

  5. 最短路径算法之四——SPFA算法

    SPAF算法 求单源最短路的SPFA算法的全称是:Shortest Path Faster Algorithm,该算法是西南交通大学段凡丁于1994年发表的. 它可以在O(kE)的时间复杂度内求出源点 ...

  6. 图论-最短路径--3、SPFA算法O(kE)

    SPFA算法O(kE) 主要思想是:     初始时将起点加入队列.每次从队列中取出一个元素,并对所有与它相邻的点进行修改,若某个相邻的点修改成功,则将其入队.直到队列为空时算法结束.     这个算 ...

  7. 题目1008:最短路径问题(SPFA算法)

    问题来源 http://ac.jobdu.com/problem.php?pid=1008 问题描述 给定一个G(V,E)有向图,起点s以及终点t,求最短路径. 问题分析 典型的单源最短路径问题,可以 ...

  8. 最短路径问题---Floyed(弗洛伊德算法),dijkstra算法,SPFA算法

    在NOIP比赛中,如果出图论题最短路径应该是个常考点. 求解最短路径常用的算法有:Floyed算法(O(n^3)的暴力算法,在比赛中大概能过三十分) dijkstra算法 (堆优化之后是O(MlogE ...

  9. [hihoCoder] #1093 : 最短路径·三:SPFA算法

    时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 万圣节的晚上,小Hi和小Ho在吃过晚饭之后,来到了一个巨大的鬼屋! 鬼屋中一共有N个地点,分别编号为1..N,这N个地点之 ...

随机推荐

  1. 猿创|有赞的zan framework安装与使用[2]

    下载并安装comoser curl -sS https://getcomposer.org/installer | php 结果各种超时 不能忍,打开迅雷下载installer:https://get ...

  2. Ext,合计保留两位小数

    1. features: [{ ftype: 'summary', dock: 'bottom' }], 2. summaryType: function(records){ return '合计'; ...

  3. expdp/impdp使用sysdba权限迁移数据

    expdp 'userid="/ as sysdba"' directory=DATA_PUMP_DIR full=y logfile=fullexp.log estimate_o ...

  4. 一点一点学写Makefile(6)-遍历当前目录源文件及其子目录下源文件

    时候,我们在开发的时候需要将本次工程的代码分成多个子目录来编写,但是在Makefile的编写上却是个问题,下面我就教大家怎么构建带有子文件夹的源代码目录的自动扫描编译 下面这张图是我的文件树 这里面s ...

  5. 失去光标display=none事件的坑

    1.实现效果: 失去光标进行判断,如果内容为空出现提示. 2.页面代码: <tr class="tableform_tr"> <td width="15 ...

  6. userdel

    功能说明:用于删除指定的用户及该用户相关的文件. 参数选项:-f 强制删除用户,即使用户当前已登录.-r 删除用户的同时,删除与用户相关的所有文件. 说明:尽量不要用userdel删除用户,而是采用在 ...

  7. HTTP 状态码 301 302

    301 Moved Permanently被请求的资源已永久移动到新位置,并且将来任何对此资源的引用都应该使用本响应返回的若干个URI之一.如果可能,拥有链接编辑功能的客户端应当自动把请求的地址修改为 ...

  8. (第七场)A Minimum Cost Perfect Matching 【位运算】

    题目链接:https://www.nowcoder.com/acm/contest/145/A A.Minimum Cost Perfect Matching You have a complete ...

  9. c#中关于结构体和字节数组转化

    最近在使用结构体与字节数组转化来实现socket间数据传输.现在开始整理一下.对于Marshal可以查阅msdn,关于字节数组与结构体转代码如下: using System; using System ...

  10. Python 学习笔记(七)Python字符串(四)

    输入输出 输入函数 raw_input (Python3:input) >>> raw_input("请输入一个字母") #获取输入内容的一个函数 请输入一个字母 ...