K Line Chart

python实现k线图的代码,之前找过matplotlib中文文档但是画k线图的finance方法已经弃用了。所以自己在网上搜寻一下加上改编,很好的实现出k线图,

代码如下:__main__

# conding:utf-8
# 导入聚宽函数库
from jqdatasdk import *
import pandas as pd
import matplotlib.pyplot as plt
from KLineChart.mpl_finance import plt_KLineChart
import os '''
:param fields 字符串list, 默认是None(表示['open', 'close', 'high', 'low', 'volume', 'money']这几个标准字段),
支持以下属性 ['open', 'close', 'low', 'high', 'volume', 'money', 'factor', 'high_limit', 'low_limit', 'avg', 'pre_close', 'paused']
:param skip_paused 是否跳过不交易日期
'''
auth('your ID','your password') fields = ['open', 'close', 'high', 'low', 'volume', 'money']
stock_code = ['600519.XSHG','000001.XSHE','IC9999.CCFX']
data = get_price(stock_code,start_date='2018-1-1',end_date='2018-8-29',frequency='1d',fields=fields,skip_paused=False)
k,m,n = data.shape
# print(k,m,n)
for i in range(n):
Data = data.iloc[:,:,i]
plt_KLineChart(Data,stock_code[i],step=20,fontSize=14)
plt.show() # 数据保存
# os.mkdir('data/中国银行.xlsx')
# data.to_excel(r'./data/中国银行.xlsx')
# sql.to_excel()
# print(data.shape)

这下我们需要导入自定义函数:from mpl_finance import plt_KLineChart

"""
A collection of functions for analyzing and plotting
financial data. User contributions welcome!
"""
from __future__ import (absolute_import, division, print_function,
unicode_literals) import numpy as np
import matplotlib.pyplot as plt
from matplotlib import colors as mcolors
from matplotlib.collections import LineCollection, PolyCollection
from matplotlib.lines import TICKLEFT, TICKRIGHT, Line2D
from matplotlib.patches import Rectangle
from matplotlib.transforms import Affine2D from six.moves import xrange, zip def plot_day_summary_oclh(ax, quotes, ticksize=3,
colorup='k', colordown='r'):
"""Plots day summary
Represent the time, open, close, high, low as a vertical line
ranging from low to high. The left tick is the open and the right
tick is the close.
Parameters
----------
ax : `Axes`
an `Axes` instance to plot to
quotes : sequence of (time, open, close, high, low, ...) sequences
data to plot. time must be in float date format - see date2num
ticksize : int
open/close tick marker in points
colorup : color
the color of the lines where close >= open
colordown : color
the color of the lines where close < open
Returns
-------
lines : list
list of tuples of the lines added (one tuple per quote)
"""
return _plot_day_summary(ax, quotes, ticksize=ticksize,
colorup=colorup, colordown=colordown,
ochl=True) def plot_day_summary_ohlc(ax, quotes, ticksize=3,
colorup='k', colordown='r'):
"""Plots day summary
Represent the time, open, high, low, close as a vertical line
ranging from low to high. The left tick is the open and the right
tick is the close.
Parameters
----------
ax : `Axes`
an `Axes` instance to plot to
quotes : sequence of (time, open, high, low, close, ...) sequences
data to plot. time must be in float date format - see date2num
ticksize : int
open/close tick marker in points
colorup : color
the color of the lines where close >= open
colordown : color
the color of the lines where close < open
Returns
-------
lines : list
list of tuples of the lines added (one tuple per quote)
"""
return _plot_day_summary(ax, quotes, ticksize=ticksize,
colorup=colorup, colordown=colordown,
ochl=False) def _plot_day_summary(ax, quotes, ticksize=3,
colorup='k', colordown='r',
ochl=True):
"""Plots day summary
Represent the time, open, high, low, close as a vertical line
ranging from low to high. The left tick is the open and the right
tick is the close.
Parameters
----------
ax : `Axes`
an `Axes` instance to plot to
quotes : sequence of quote sequences
data to plot. time must be in float date format - see date2num
(time, open, high, low, close, ...) vs
(time, open, close, high, low, ...)
set by `ochl`
ticksize : int
open/close tick marker in points
colorup : color
the color of the lines where close >= open
colordown : color
the color of the lines where close < open
ochl: bool
argument to select between ochl and ohlc ordering of quotes
Returns
-------
lines : list
list of tuples of the lines added (one tuple per quote)
"""
# unfortunately this has a different return type than plot_day_summary2_*
lines = []
for q in quotes:
if ochl:
t, open, close, high, low = q[:5]
else:
t, open, high, low, close = q[:5] if close >= open:
color = colorup
else:
color = colordown vline = Line2D(xdata=(t, t), ydata=(low, high),
color=color,
antialiased=False, # no need to antialias vert lines
) oline = Line2D(xdata=(t, t), ydata=(open, open),
color=color,
antialiased=False,
marker=TICKLEFT,
markersize=ticksize,
) cline = Line2D(xdata=(t, t), ydata=(close, close),
color=color,
antialiased=False,
markersize=ticksize,
marker=TICKRIGHT) lines.extend((vline, oline, cline))
ax.add_line(vline)
ax.add_line(oline)
ax.add_line(cline) ax.autoscale_view() return lines def candlestick_ochl(ax, quotes, width=0.2, colorup='k', colordown='r',
alpha=1.0):
"""
Plot the time, open, close, high, low as a vertical line ranging
from low to high. Use a rectangular bar to represent the
open-close span. If close >= open, use colorup to color the bar,
otherwise use colordown
Parameters
----------
ax : `Axes`
an Axes instance to plot to
quotes : sequence of (time, open, close, high, low, ...) sequences
As long as the first 5 elements are these values,
the record can be as long as you want (e.g., it may store volume).
time must be in float days format - see date2num
width : float
fraction of a day for the rectangle width
colorup : color
the color of the rectangle where close >= open
colordown : color
the color of the rectangle where close < open
alpha : float
the rectangle alpha level
Returns
-------
ret : tuple
returns (lines, patches) where lines is a list of lines
added and patches is a list of the rectangle patches added
"""
return _candlestick(ax, quotes, width=width, colorup=colorup,
colordown=colordown,
alpha=alpha, ochl=True) def plt_KLineChart(data,stockCode,step=20,fontSize=13,figsize=(12,6)): '''
:param data: type for DataFrame
:param stockCode: stock code
:param step: xticks step
:param fontSize: font size
:param figsize: window size
:return:
''' prices = data[['open', 'high', 'low', 'close']] fig = plt.figure(figsize=figsize)
ax = fig.add_axes([0.06, 0.15, 0.9, 0.75]) # margin_left margin_bottom width height
candlestick_ohlc(ax, prices, width=0.5, colorup='r', colordown='b') dataIndex = [str(i).split(' ')[0] for i in data.iloc[::step, :].index]
location = list(range(0,len(data.iloc[:,0]),step))
plt.xticks(location,dataIndex,rotation=45) font_size = {'size': fontSize}
plt.ylabel('prices',font_size)
plt.title('stock:%s'%(stockCode),font_size)
plt.rcParams['font.sans-serif'] = ['SimHei'] # 设置字体为SimHei显示中文
plt.rcParams['axes.unicode_minus'] = False # 设置正常显示符号 def candlestick_ohlc(ax, quotes, width=0.2, colorup='k', colordown='r',
alpha=1.0):
"""
Plot the time, open, high, low, close as a vertical line ranging
from low to high. Use a rectangular bar to represent the
open-close span. If close >= open, use colorup to color the bar,
otherwise use colordown
Parameters
----------
ax : `Axes`
an Axes instance to plot to
quotes : sequence of (time, open, high, low, close, ...) sequences
As long as the first 5 elements are these values,
the record can be as long as you want (e.g., it may store volume).
time must be in float days format - see date2num
width : float
fraction of a day for the rectangle width
colorup : color
the color of the rectangle where close >= open
colordown : color
the color of the rectangle where close < open
alpha : float
the rectangle alpha level
Returns
-------
ret : tuple
returns (lines, patches) where lines is a list of lines
added and patches is a list of the rectangle patches added
"""
return _candlestick(ax, quotes, width=width, colorup=colorup,
colordown=colordown,
alpha=alpha, ochl=False) def _candlestick(ax, quotes, width=0.2, colorup='k', colordown='r',
alpha=1.0, ochl=True):
"""
Plot the time, open, high, low, close as a vertical line ranging
from low to high. Use a rectangular bar to represent the
open-close span. If close >= open, use colorup to color the bar,
otherwise use colordown
Parameters
----------
ax : `Axes`
an Axes instance to plot to
quotes : sequence of quote sequences
data to plot. time must be in float date format - see date2num
(time, open, high, low, close, ...) vs
(time, open, close, high, low, ...)
set by `ochl`
width : float
fraction of a day for the rectangle width
colorup : color
the color of the rectangle where close >= open
colordown : color
the color of the rectangle where close < open
alpha : float
the rectangle alpha level
ochl: bool
argument to select between ochl and ohlc ordering of quotes
Returns
-------
ret : tuple
returns (lines, patches) where lines is a list of lines
added and patches is a list of the rectangle patches added
""" OFFSET = width / 2.0 lines = []
patches = []
quotes = np.column_stack([list(range(len(quotes))), quotes])
for q in quotes:
if ochl:
t, open, close, high, low = q[:5]
else:
t, open, high, low, close = q[:5] if close >= open:
color = colorup
lower = open
height = close - open
else:
color = colordown
lower = close
height = open - close vline = Line2D(
xdata=(t, t), ydata=(low, high),
color=color,
linewidth=0.5,
antialiased=True,
) rect = Rectangle(
xy=(t - OFFSET, lower),
width=width,
height=height,
facecolor=color,
edgecolor=color,
)
rect.set_alpha(alpha) lines.append(vline)
patches.append(rect)
ax.add_line(vline)
ax.add_patch(rect)
ax.autoscale_view() return lines, patches def _check_input(opens, closes, highs, lows, miss=-1):
"""Checks that *opens*, *highs*, *lows* and *closes* have the same length.
NOTE: this code assumes if any value open, high, low, close is
missing (*-1*) they all are missing
Parameters
----------
ax : `Axes`
an Axes instance to plot to
opens : sequence
sequence of opening values
highs : sequence
sequence of high values
lows : sequence
sequence of low values
closes : sequence
sequence of closing values
miss : int
identifier of the missing data
Raises
------
ValueError
if the input sequences don't have the same length
""" def _missing(sequence, miss=-1):
"""Returns the index in *sequence* of the missing data, identified by
*miss*
Parameters
----------
sequence :
sequence to evaluate
miss :
identifier of the missing data
Returns
-------
where_miss: numpy.ndarray
indices of the missing data
"""
return np.where(np.array(sequence) == miss)[0] same_length = len(opens) == len(highs) == len(lows) == len(closes)
_missopens = _missing(opens)
same_missing = ((_missopens == _missing(highs)).all() and
(_missopens == _missing(lows)).all() and
(_missopens == _missing(closes)).all()) if not (same_length and same_missing):
msg = ("*opens*, *highs*, *lows* and *closes* must have the same"
" length. NOTE: this code assumes if any value open, high,"
" low, close is missing (*-1*) they all must be missing.")
raise ValueError(msg) def plot_day_summary2_ochl(ax, opens, closes, highs, lows, ticksize=4,
colorup='k', colordown='r'):
"""Represent the time, open, close, high, low, as a vertical line
ranging from low to high. The left tick is the open and the right
tick is the close.
Parameters
----------
ax : `Axes`
an Axes instance to plot to
opens : sequence
sequence of opening values
closes : sequence
sequence of closing values
highs : sequence
sequence of high values
lows : sequence
sequence of low values
ticksize : int
size of open and close ticks in points
colorup : color
the color of the lines where close >= open
colordown : color
the color of the lines where close < open
Returns
-------
ret : list
a list of lines added to the axes
""" return plot_day_summary2_ohlc(ax, opens, highs, lows, closes, ticksize,
colorup, colordown) def plot_day_summary2_ohlc(ax, opens, highs, lows, closes, ticksize=4,
colorup='k', colordown='r'):
"""Represent the time, open, high, low, close as a vertical line
ranging from low to high. The left tick is the open and the right
tick is the close.
*opens*, *highs*, *lows* and *closes* must have the same length.
NOTE: this code assumes if any value open, high, low, close is
missing (*-1*) they all are missing
Parameters
----------
ax : `Axes`
an Axes instance to plot to
opens : sequence
sequence of opening values
highs : sequence
sequence of high values
lows : sequence
sequence of low values
closes : sequence
sequence of closing values
ticksize : int
size of open and close ticks in points
colorup : color
the color of the lines where close >= open
colordown : color
the color of the lines where close < open
Returns
-------
ret : list
a list of lines added to the axes
""" _check_input(opens, highs, lows, closes) rangeSegments = [((i, low), (i, high)) for i, low, high in
zip(xrange(len(lows)), lows, highs) if low != -1] # the ticks will be from ticksize to 0 in points at the origin and
# we'll translate these to the i, close location
openSegments = [((-ticksize, 0), (0, 0))] # the ticks will be from 0 to ticksize in points at the origin and
# we'll translate these to the i, close location
closeSegments = [((0, 0), (ticksize, 0))] offsetsOpen = [(i, open) for i, open in
zip(xrange(len(opens)), opens) if open != -1] offsetsClose = [(i, close) for i, close in
zip(xrange(len(closes)), closes) if close != -1] scale = ax.figure.dpi * (1.0 / 72.0) tickTransform = Affine2D().scale(scale, 0.0) colorup = mcolors.to_rgba(colorup)
colordown = mcolors.to_rgba(colordown)
colord = {True: colorup, False: colordown}
colors = [colord[open < close] for open, close in
zip(opens, closes) if open != -1 and close != -1] useAA = 0, # use tuple here
lw = 1, # and here
rangeCollection = LineCollection(rangeSegments,
colors=colors,
linewidths=lw,
antialiaseds=useAA,
) openCollection = LineCollection(openSegments,
colors=colors,
antialiaseds=useAA,
linewidths=lw,
offsets=offsetsOpen,
transOffset=ax.transData,
)
openCollection.set_transform(tickTransform) closeCollection = LineCollection(closeSegments,
colors=colors,
antialiaseds=useAA,
linewidths=lw,
offsets=offsetsClose,
transOffset=ax.transData,
)
closeCollection.set_transform(tickTransform) minpy, maxx = (0, len(rangeSegments))
miny = min([low for low in lows if low != -1])
maxy = max([high for high in highs if high != -1])
corners = (minpy, miny), (maxx, maxy)
ax.update_datalim(corners)
ax.autoscale_view() # add these last
ax.add_collection(rangeCollection)
ax.add_collection(openCollection)
ax.add_collection(closeCollection)
return rangeCollection, openCollection, closeCollection def candlestick2_ochl(ax, opens, closes, highs, lows, width=4,
colorup='k', colordown='r',
alpha=0.75):
"""Represent the open, close as a bar line and high low range as a
vertical line.
Preserves the original argument order.
Parameters
----------
ax : `Axes`
an Axes instance to plot to
opens : sequence
sequence of opening values
closes : sequence
sequence of closing values
highs : sequence
sequence of high values
lows : sequence
sequence of low values
width : int
size of open and close ticks in points
colorup : color
the color of the lines where close >= open
colordown : color
the color of the lines where close < open
alpha : float
bar transparency
Returns
-------
ret : tuple
(lineCollection, barCollection)
""" return candlestick2_ohlc(ax, opens, highs, lows, closes, width=width,
colorup=colorup, colordown=colordown,
alpha=alpha) def candlestick2_ohlc(ax, opens, highs, lows, closes, width=4,
colorup='k', colordown='r',
alpha=0.75):
"""Represent the open, close as a bar line and high low range as a
vertical line.
NOTE: this code assumes if any value open, low, high, close is
missing they all are missing
Parameters
----------
ax : `Axes`
an Axes instance to plot to
opens : sequence
sequence of opening values
highs : sequence
sequence of high values
lows : sequence
sequence of low values
closes : sequence
sequence of closing values
width : int
size of open and close ticks in points
colorup : color
the color of the lines where close >= open
colordown : color
the color of the lines where close < open
alpha : float
bar transparency
Returns
-------
ret : tuple
(lineCollection, barCollection)
""" _check_input(opens, highs, lows, closes) delta = width / 2.
barVerts = [((i - delta, open),
(i - delta, close),
(i + delta, close),
(i + delta, open))
for i, open, close in zip(xrange(len(opens)), opens, closes)
if open != -1 and close != -1] rangeSegments = [((i, low), (i, high))
for i, low, high in zip(xrange(len(lows)), lows, highs)
if low != -1] colorup = mcolors.to_rgba(colorup, alpha)
colordown = mcolors.to_rgba(colordown, alpha)
colord = {True: colorup, False: colordown}
colors = [colord[open < close]
for open, close in zip(opens, closes)
if open != -1 and close != -1] useAA = 0, # use tuple here
lw = 0.5, # and here
rangeCollection = LineCollection(rangeSegments,
colors=colors,
linewidths=lw,
antialiaseds=useAA,
) barCollection = PolyCollection(barVerts,
facecolors=colors,
edgecolors=colors,
antialiaseds=useAA,
linewidths=lw,
) minx, maxx = 0, len(rangeSegments)
miny = min([low for low in lows if low != -1])
maxy = max([high for high in highs if high != -1]) corners = (minx, miny), (maxx, maxy)
ax.update_datalim(corners)
ax.autoscale_view() # add these last
ax.add_collection(rangeCollection)
ax.add_collection(barCollection)
return rangeCollection, barCollection def volume_overlay(ax, opens, closes, volumes,
colorup='k', colordown='r',
width=4, alpha=1.0):
"""Add a volume overlay to the current axes. The opens and closes
are used to determine the color of the bar. -1 is missing. If a
value is missing on one it must be missing on all
Parameters
----------
ax : `Axes`
an Axes instance to plot to
opens : sequence
a sequence of opens
closes : sequence
a sequence of closes
volumes : sequence
a sequence of volumes
width : int
the bar width in points
colorup : color
the color of the lines where close >= open
colordown : color
the color of the lines where close < open
alpha : float
bar transparency
Returns
-------
ret : `barCollection`
The `barrCollection` added to the axes
""" colorup = mcolors.to_rgba(colorup, alpha)
colordown = mcolors.to_rgba(colordown, alpha)
colord = {True: colorup, False: colordown}
colors = [colord[open < close]
for open, close in zip(opens, closes)
if open != -1 and close != -1] delta = width / 2.
bars = [((i - delta, 0), (i - delta, v), (i + delta, v), (i + delta, 0))
for i, v in enumerate(volumes)
if v != -1] barCollection = PolyCollection(bars,
facecolors=colors,
edgecolors=((0, 0, 0, 1),),
antialiaseds=(0,),
linewidths=(0.5,),
) ax.add_collection(barCollection)
corners = (0, 0), (len(bars), max(volumes))
ax.update_datalim(corners)
ax.autoscale_view() # add these last
return barCollection def volume_overlay2(ax, closes, volumes,
colorup='k', colordown='r',
width=4, alpha=1.0):
"""
Add a volume overlay to the current axes. The closes are used to
determine the color of the bar. -1 is missing. If a value is
missing on one it must be missing on all
nb: first point is not displayed - it is used only for choosing the
right color
Parameters
----------
ax : `Axes`
an Axes instance to plot to
closes : sequence
a sequence of closes
volumes : sequence
a sequence of volumes
width : int
the bar width in points
colorup : color
the color of the lines where close >= open
colordown : color
the color of the lines where close < open
alpha : float
bar transparency
Returns
-------
ret : `barCollection`
The `barrCollection` added to the axes
""" return volume_overlay(ax, closes[:-1], closes[1:], volumes[1:],
colorup, colordown, width, alpha) def volume_overlay3(ax, quotes,
colorup='k', colordown='r',
width=4, alpha=1.0):
"""Add a volume overlay to the current axes. quotes is a list of (d,
open, high, low, close, volume) and close-open is used to
determine the color of the bar
Parameters
----------
ax : `Axes`
an Axes instance to plot to
quotes : sequence of (time, open, high, low, close, ...) sequences
data to plot. time must be in float date format - see date2num
width : int
the bar width in points
colorup : color
the color of the lines where close1 >= close0
colordown : color
the color of the lines where close1 < close0
alpha : float
bar transparency
Returns
-------
ret : `barCollection`
The `barrCollection` added to the axes
""" colorup = mcolors.to_rgba(colorup, alpha)
colordown = mcolors.to_rgba(colordown, alpha)
colord = {True: colorup, False: colordown} dates, opens, highs, lows, closes, volumes = list(zip(*quotes))
colors = [colord[close1 >= close0]
for close0, close1 in zip(closes[:-1], closes[1:])
if close0 != -1 and close1 != -1]
colors.insert(0, colord[closes[0] >= opens[0]]) right = width / 2.0
left = -width / 2.0 bars = [((left, 0), (left, volume), (right, volume), (right, 0))
for d, open, high, low, close, volume in quotes] sx = ax.figure.dpi * (1.0 / 72.0) # scale for points
sy = ax.bbox.height / ax.viewLim.height barTransform = Affine2D().scale(sx, sy) dates = [d for d, open, high, low, close, volume in quotes]
offsetsBars = [(d, 0) for d in dates] useAA = 0, # use tuple here
lw = 0.5, # and here
barCollection = PolyCollection(bars,
facecolors=colors,
edgecolors=((0, 0, 0, 1),),
antialiaseds=useAA,
linewidths=lw,
offsets=offsetsBars,
transOffset=ax.transData,
)
barCollection.set_transform(barTransform) minpy, maxx = (min(dates), max(dates))
miny = 0
maxy = max([volume for d, open, high, low, close, volume in quotes])
corners = (minpy, miny), (maxx, maxy)
ax.update_datalim(corners)
# print 'datalim', ax.dataLim.bounds
# print 'viewlim', ax.viewLim.bounds ax.add_collection(barCollection)
ax.autoscale_view() return barCollection def index_bar(ax, vals,
facecolor='b', edgecolor='l',
width=4, alpha=1.0, ):
"""Add a bar collection graph with height vals (-1 is missing).
Parameters
----------
ax : `Axes`
an Axes instance to plot to
vals : sequence
a sequence of values
facecolor : color
the color of the bar face
edgecolor : color
the color of the bar edges
width : int
the bar width in points
alpha : float
bar transparency
Returns
-------
ret : `barCollection`
The `barrCollection` added to the axes
""" facecolors = (mcolors.to_rgba(facecolor, alpha),)
edgecolors = (mcolors.to_rgba(edgecolor, alpha),) right = width / 2.0
left = -width / 2.0 bars = [((left, 0), (left, v), (right, v), (right, 0))
for v in vals if v != -1] sx = ax.figure.dpi * (1.0 / 72.0) # scale for points
sy = ax.bbox.height / ax.viewLim.height barTransform = Affine2D().scale(sx, sy) offsetsBars = [(i, 0) for i, v in enumerate(vals) if v != -1] barCollection = PolyCollection(bars,
facecolors=facecolors,
edgecolors=edgecolors,
antialiaseds=(0,),
linewidths=(0.5,),
offsets=offsetsBars,
transOffset=ax.transData,
)
barCollection.set_transform(barTransform) minpy, maxx = (0, len(offsetsBars))
miny = 0
maxy = max([v for v in vals if v != -1])
corners = (minpy, miny), (maxx, maxy)
ax.update_datalim(corners)
ax.autoscale_view() # add these last
ax.add_collection(barCollection)
return barCollection

K线图函数:plt_KLineChart

关于k Line Chart (k线图)的更多相关文章

  1. Open Flash Chart 之线图

    天公司要求开发一个曲线图,简单看了一下之前公司的一个系统,发现一个曲线图效果还不错,查了一下叫OpenFlashChart,还是很不错的,很多人用.研究了一下,发现还不错,特地写了个DEMO测试下. ...

  2. Open Flash Chart 之线图(二)

    上一节在研究Open Flash Chart时,漏掉不少东西,只是简单的熟悉了一下后端的属性设置.今天再来补充一下. 一.显示Open Flash Chart图表 Open Flash Chart 前 ...

  3. pyhton中matplotlib箱线图的绘制(matplotlib双轴图、箱线图、散点图以及相关系数矩阵图))

    //2019.07.23 1.箱形图,又称为盒式图,一般可以很好地反映出数据分布的特征,也可以进行多项数据之间分布特征的比较,它主要包含五个基础数据:中位数,两个上下分位数以及上下边缘线数据 其中的一 ...

  4. canvas绘图,html5 k线图,股票行情图

    canvas绘图,html5 k线图,股票行情图 canvas跟其他标签一样,也可以通过css来定义样式.但这里需要注意的是:canvas的默认宽高为300px * 150px,在css中为canva ...

  5. Android开源图表图形库K线图

    Android开源图表图形库K线图 web端k线图一般使用TradingView,android原生的一般是在MPAndroidChart 基础上做开发的,目前看到一个比较好的K线开源组件是KChar ...

  6. highstock K线图 深入研究

    K线图,相信每个股民都不陌生,如何用SVG画好一个K线图是一个难题. 我选择用highstock做为画图组件,适当的修改了一下源码,参考了数个财经网站的案例,完成了一个不太成熟的K线图,欢迎大家批评指 ...

  7. WPF中使用amCharts绘制股票K线图

    原文:WPF中使用amCharts绘制股票K线图 本想自己用GDI绘图, 通过数据直接绘制一张蜡柱图, 但觉得这样子的功能比较少, 所以到网上搜索一些能画出K线图的控件. 发现DynamicDataD ...

  8. Wijmo金融图表系列之平均K线图&砖形图

    2015年7月16日将会发布有史以来最令人兴奋的控件-Wijmo 金融图表,它的一体化设计为单个自定义集合提供了所有主要的金融图表,这是市场上的其他控件都不具备的独一无二的好处.它像Wijmo其他任意 ...

  9. Highcharts candlestick(K线图)案例

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

随机推荐

  1. 【个人训练】(POJ3279)Fliptile

    最近在刷kuangbin神犇的各种套题....感觉自己好弱啊.....还是要多多训练,跟上大神的脚步.最近的这十几题都比较水,记下来这一条我比较印象深刻.也比较难的题目吧(之后应该不会再有水题写了,珍 ...

  2. 第二十一篇 json,picklz,xml模块

    Json模块 Json模块比较简单,仅有四个方法dumps()和loads()方法,dump()和load()方法,但是却非常的常用,实用性极强. 如果要在不同的编程语言之间传递对象,就必须把对象序列 ...

  3. Tuxedo 通讯方式解析

    本节根据tuxedo自带samples的例子,让其运行起来.并通过这个例子,深入的理解tuxedo的通讯方式. 进入tuxedo的安装目录,samples目录下自带了一些例子 [root@localh ...

  4. 九度OJ--Q1163

    import java.util.ArrayList;import java.util.Scanner; /* * 题目描述: * 输入一个整数n(2<=n<=10000),要求输出所有从 ...

  5. C++学习---- virtual的三种用法

    virtual用法一:多态 #include<iostream> using namespace std; class A{ public: virtual void display(){ ...

  6. POJ 2082 Terrible Sets(栈)

    Description Let N be the set of all natural numbers {0 , 1 , 2 , . . . }, and R be the set of all re ...

  7. hadoop节点之间通信问题

    前天遇到一个hadoop问题,由于之前都是伪分布的情况,没有真正的涉及到集群的环境,最近按照一些资料自己搭建了一个集群环境,三台虚拟机,一个master,两个slave,利用jps查看节点信息,启动了 ...

  8. iOS-plist文件的写读

    NSString *plistPath = [[NSBundle mainBundle] pathForResource:@"xiaoli" ofType:@"plist ...

  9. homework for Java

    public class Dog { private String name; private String color; private int age; public Dog(String nam ...

  10. Java基础知识-去重

    java基础知识-去掉list集合中的重复元素: 思路: 首先新建一个容器resultList用来存放去重之后的元素 然后遍历sourceList集合中的元素 判断所遍历的元素是否已经存在于resul ...