poj1860(Bellman—fold)
题目连接:http://poj.org/problem?id=1860
Description
For example, if you want to exchange 100 US Dollars into Russian Rubles at the exchange point, where the exchange rate is 29.75, and the commission is 0.39 you will get (100 - 0.39) * 29.75 = 2963.3975RUR.
You surely know that there are N different currencies you can deal with in our city. Let us assign unique integer number from 1 to N to each currency. Then each exchange point can be described with 6 numbers: integer A and B - numbers of currencies it exchanges, and real RAB, CAB, RBA and CBA - exchange rates and commissions when exchanging A to B and B to A respectively.
Nick has some money in currency S and wonders if he can somehow, after some exchange operations, increase his capital. Of course, he wants to have his money in currency S in the end. Help him to answer this difficult question. Nick must always have non-negative sum of money while making his operations.
Input
For each point exchange rates and commissions are real, given with at most two digits after the decimal point, 10-2<=rate<=102, 0<=commission<=102.
Let us call some sequence of the exchange operations simple if no exchange point is used more than once in this sequence. You may assume that ratio of the numeric values of the sums at the end and at the beginning of any simple sequence of the exchange operations will be less than 104.
Output
Sample Input
3 2 1 20.0 1 2 1.00 1.00 1.00 1.00 2 3 1.10 1.00 1.10 1.00
Sample Output
YES 题目大意:有若干种货币,若干个兑换点,每个兑换点可以把一种货币兑换为另一种货币(可A->B,也可B->A),但是兑换有佣金,假设把A变为B,汇率为r,佣金为c,则B=(A-c)*r。给出这些兑换点的信息 以及 初始的钱的种类和数量,求是否可能进过若干次兑换使钱(最后必须是最开始的币种)变多;解题思路:转化为图,货币为节点,兑换点为边,则构成一个无向图,而问题就转化成了求次无向图是否存在正环(因为最后要化成开始的币种,而不是价值变多即可,所以是求正环)用Bellman——fold算法的思想,可以无限松弛即为正环,就可以解决了(原算法为求负环,只需把初始化的状态和松弛条件改一下即可)
//#include<bits/stdc++.h>
#include<iostream>
#include<cstdio>
#include<queue>
#include<algorithm>
#include<cstring>
using namespace std;
struct Edge
{
int from,to;
double r,c;
Edge(int u,int v,double r,double c):from(u),to(v),r(r),c(c) {}
};
vector<];
vector<Edge> edges;
]= {};
]= {};
];
int n;
bool bellman_fold(int s,double value)
{
queue<int> Q;
memset(d,,sizeof(d));
Q.push(s);
d[s]=value;
inq[s]=;
while(!Q.empty())
{
int u=Q.front();
Q.pop();
inq[u]=;
; i<G[u].size(); i++)
{
int now=G[u][i];
Edge & e=edges[now];
&&d[e.to]<(d[u]-e.c)*e.r)
{
d[e.to]=(d[u]-e.c)*e.r;
if(!inq[e.to])
{
Q.push(e.to);
inq[e.to]=;
if(++cnt[e.to]>n)
;
}
}
}
}
;
}
int main()
{
int m,no;
;
double sum;
cin>>n>>m>>no>>sum;
while(m--)
{
int no1,no2;
double rab,cab,rba,cba;
scanf("%d%d%lf%lf%lf%lf",&no1,&no2,&rab,&cab,&rba,&cba);
edges.push_back(Edge(no1,no2,rab,cab));
G[no1].push_back(x);
x++;
edges.push_back(Edge(no2,no1,rba,cba));
G[no2].push_back(x);
x++;
}
bool flag = bellman_fold(no,sum);
if(flag)
cout<<"NO"<<endl;
else
cout<<"YES"<<endl;
}
poj1860(Bellman—fold)的更多相关文章
- POJ1860(Currency Exchange)
题意: 给出一张各种货币交换的网络,问在网络中交换原有的货币,问货币能否增值? 解析: 判断是否存在正环即可 用spfa 负环和正环的判定方法一样 如果一个点的进队次数超过n次 则存在环 代码如 ...
- [笔记]LibSVM源码剖析(java版)
之前学习了SVM的原理(见http://www.cnblogs.com/bentuwuying/p/6444249.html),以及SMO算法的理论基础(见http://www.cnblogs.com ...
- LibSVM源码剖析(java版)
之前学习了SVM的原理(见http://www.cnblogs.com/bentuwuying/p/6444249.html),以及SMO算法的理论基础(见http://www.cnblogs.com ...
- Til the Cows Come Home 最短路Dijkstra+bellman(普通+优化)
Til the Cows Come Home 最短路Dijkstra+bellman(普通+优化) 贝西在田里,想在农夫约翰叫醒她早上挤奶之前回到谷仓尽可能多地睡一觉.贝西需要她的美梦,所以她想尽快回 ...
- LibLinear(SVM包)使用说明之(一)README
转自:http://blog.csdn.net/zouxy09/article/details/10947323/ LibLinear(SVM包)使用说明之(一)README zouxy09@qq.c ...
- POJ 1860 Currency Exchange (最短路)
Currency Exchange Time Limit : 2000/1000ms (Java/Other) Memory Limit : 60000/30000K (Java/Other) T ...
- 从零开始学ios开发(十八):Storyboards(下)
这篇我们完成Storyboards的最后一个例子,之前的例子中没有view之间的切换,这篇加上这个功能,使Storyboards的功能完整呈现.在Storyboards中负责view切换的东西叫做“s ...
- linux —— shell 编程(文本处理)
导读 本文为博文linux —— shell 编程(整体框架与基础笔记)的第4小点的拓展.(本文所有语句的测试均在 Ubuntu 16.04 LTS 上进行) 目录 基本文本处理 流编辑器sed aw ...
- erlang程序优化点的总结(持续更新)
转自:http://wqtn22.iteye.com/blog/1820587 转载请注明出处 注意,这里只是给出一个总结,具体性能需要根据实际环境和需要来确定 霸爷指出,新的erlang虚拟机有很多 ...
随机推荐
- 【bzoj3262】陌上花开 CDQ分治+树状数组
题目描述 有n朵花,每朵花有三个属性:花形(s).颜色(c).气味(m),又三个整数表示.现要对每朵花评级,一朵花的级别是它拥有的美丽能超过的花的数量.定义一朵花A比另一朵花B要美丽,当且仅当Sa&g ...
- jQuery - AJAX get()和post()方法
jQuery get()和post()方法用于通过HTTP GET或POST请求从服务器请求数据. HTTP请求:GET VS POST 两种在客户端和服务器端进行请求-响应的常用方法是:GET和PO ...
- shared_ptr 的循环依赖问题
#include <memory> #include <iostream> using namespace std; struct A; struct B; struct A ...
- GDI绘图中的映射模式CDC::SetMapMode()
原文链接:http://blog.csdn.net/charlessimonyi/article/details/8264572 在GDI绘图前,一般要设置映射模式.映射模式是什么呢?它是逻辑长度单位 ...
- 【bzoj2756 奇怪的游戏】
Time Limit: 40 Sec Memory Limit: 128 MBSubmit: 4403 Solved: 1226[Submit][Status][Discuss] Descript ...
- [ZJOI2007]棋盘制作 (单调栈)
[ZJOI2007]棋盘制作 题目描述 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8 \times 88×8大小的黑白相间 ...
- ionic运行测试
http://blog.csdn.net/yucihan/article/details/54631747
- mysql的对象
mysql 常见的数据对象有哪些: DataBase/Schema Table Index View/Trigger/Function/Procedure 多Database用途: 业务的隔离 ...
- selenium 获取某个元素的html
<table> <tbody id="tb-37327761306"> <tr class="sep-row"><td ...
- MySQL远程访问权限 允许远程连接
1 首先cd / 到根目录,打开mysql控制台 登录数据库 mysql -u root -p 2.授权远程连接 mysql> use mysql; Database changed mysq ...