题目连接:http://poj.org/problem?id=1860

Description

Several currency exchange points are working in our city. Let us suppose that each point specializes in two particular currencies and performs exchange operations only with these currencies. There can be several points specializing in the same pair of currencies. Each point has its own exchange rates, exchange rate of A to B is the quantity of B you get for 1A. Also each exchange point has some commission, the sum you have to pay for your exchange operation. Commission is always collected in source currency. 
For example, if you want to exchange 100 US Dollars into Russian Rubles at the exchange point, where the exchange rate is 29.75, and the commission is 0.39 you will get (100 - 0.39) * 29.75 = 2963.3975RUR. 
You surely know that there are N different currencies you can deal with in our city. Let us assign unique integer number from 1 to N to each currency. Then each exchange point can be described with 6 numbers: integer A and B - numbers of currencies it exchanges, and real RAB, CAB, RBA and CBA - exchange rates and commissions when exchanging A to B and B to A respectively. 
Nick has some money in currency S and wonders if he can somehow, after some exchange operations, increase his capital. Of course, he wants to have his money in currency S in the end. Help him to answer this difficult question. Nick must always have non-negative sum of money while making his operations. 

Input

The first line of the input contains four numbers: N - the number of currencies, M - the number of exchange points, S - the number of currency Nick has and V - the quantity of currency units he has. The following M lines contain 6 numbers each - the description of the corresponding exchange point - in specified above order. Numbers are separated by one or more spaces. 1<=S<=N<=100, 1<=M<=100, V is real number, 0<=V<=103
For each point exchange rates and commissions are real, given with at most two digits after the decimal point, 10-2<=rate<=102, 0<=commission<=102
Let us call some sequence of the exchange operations simple if no exchange point is used more than once in this sequence. You may assume that ratio of the numeric values of the sums at the end and at the beginning of any simple sequence of the exchange operations will be less than 104

Output

If Nick can increase his wealth, output YES, in other case output NO to the output file.

Sample Input

3 2 1 20.0
1 2 1.00 1.00 1.00 1.00
2 3 1.10 1.00 1.10 1.00

Sample Output

YES

题目大意:有若干种货币,若干个兑换点,每个兑换点可以把一种货币兑换为另一种货币(可A->B,也可B->A),但是兑换有佣金,假设把A变为B,汇率为r,佣金为c,则B=(A-c)*r。给出这些兑换点的信息 以及 初始的钱的种类和数量,求是否可能进过若干次兑换使钱(最后必须是最开始的币种)变多;解题思路:转化为图,货币为节点,兑换点为边,则构成一个无向图,而问题就转化成了求次无向图是否存在正环(因为最后要化成开始的币种,而不是价值变多即可,所以是求正环)用Bellman——fold算法的思想,可以无限松弛即为正环,就可以解决了(原算法为求负环,只需把初始化的状态和松弛条件改一下即可)
//#include<bits/stdc++.h>
#include<iostream>
#include<cstdio>
#include<queue>
#include<algorithm>
#include<cstring>

using namespace std;

struct Edge
{
    int from,to;
    double r,c;
    Edge(int u,int v,double r,double c):from(u),to(v),r(r),c(c) {}
};

vector<];
vector<Edge> edges;
]= {};
]= {};
];
int n;

bool bellman_fold(int s,double value)
{
    queue<int> Q;
    memset(d,,sizeof(d));
    Q.push(s);
    d[s]=value;
    inq[s]=;
    while(!Q.empty())
    {
        int u=Q.front();
        Q.pop();
        inq[u]=;
        ; i<G[u].size(); i++)
        {
            int now=G[u][i];
            Edge & e=edges[now];
            &&d[e.to]<(d[u]-e.c)*e.r)
            {
                d[e.to]=(d[u]-e.c)*e.r;
                if(!inq[e.to])
                {
                    Q.push(e.to);
                    inq[e.to]=;
                    if(++cnt[e.to]>n)
                        ;
                }
            }
        }
    }
    ;
}

int main()
{
    int m,no;
    ;
    double sum;
    cin>>n>>m>>no>>sum;
    while(m--)
    {
        int no1,no2;
        double rab,cab,rba,cba;
        scanf("%d%d%lf%lf%lf%lf",&no1,&no2,&rab,&cab,&rba,&cba);
        edges.push_back(Edge(no1,no2,rab,cab));
        G[no1].push_back(x);
        x++;
        edges.push_back(Edge(no2,no1,rba,cba));
        G[no2].push_back(x);
        x++;
    }
    bool flag = bellman_fold(no,sum);
    if(flag)
        cout<<"NO"<<endl;
    else
        cout<<"YES"<<endl;
}

poj1860(Bellman—fold)的更多相关文章

  1. POJ1860(Currency Exchange)

    题意: 给出一张各种货币交换的网络,问在网络中交换原有的货币,问货币能否增值? 解析: 判断是否存在正环即可  用spfa  负环和正环的判定方法一样  如果一个点的进队次数超过n次 则存在环 代码如 ...

  2. [笔记]LibSVM源码剖析(java版)

    之前学习了SVM的原理(见http://www.cnblogs.com/bentuwuying/p/6444249.html),以及SMO算法的理论基础(见http://www.cnblogs.com ...

  3. LibSVM源码剖析(java版)

    之前学习了SVM的原理(见http://www.cnblogs.com/bentuwuying/p/6444249.html),以及SMO算法的理论基础(见http://www.cnblogs.com ...

  4. Til the Cows Come Home 最短路Dijkstra+bellman(普通+优化)

    Til the Cows Come Home 最短路Dijkstra+bellman(普通+优化) 贝西在田里,想在农夫约翰叫醒她早上挤奶之前回到谷仓尽可能多地睡一觉.贝西需要她的美梦,所以她想尽快回 ...

  5. LibLinear(SVM包)使用说明之(一)README

    转自:http://blog.csdn.net/zouxy09/article/details/10947323/ LibLinear(SVM包)使用说明之(一)README zouxy09@qq.c ...

  6. POJ 1860 Currency Exchange (最短路)

    Currency Exchange Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 60000/30000K (Java/Other) T ...

  7. 从零开始学ios开发(十八):Storyboards(下)

    这篇我们完成Storyboards的最后一个例子,之前的例子中没有view之间的切换,这篇加上这个功能,使Storyboards的功能完整呈现.在Storyboards中负责view切换的东西叫做“s ...

  8. linux —— shell 编程(文本处理)

    导读 本文为博文linux —— shell 编程(整体框架与基础笔记)的第4小点的拓展.(本文所有语句的测试均在 Ubuntu 16.04 LTS 上进行) 目录 基本文本处理 流编辑器sed aw ...

  9. erlang程序优化点的总结(持续更新)

    转自:http://wqtn22.iteye.com/blog/1820587 转载请注明出处 注意,这里只是给出一个总结,具体性能需要根据实际环境和需要来确定 霸爷指出,新的erlang虚拟机有很多 ...

随机推荐

  1. div clear清除浮动产生的影响 被受影响的div加上清除浮动后 不会填充前一个div浮动后空出的位置

  2. Codeforces Round #392 (div.2) E:Broken Tree

    orz一开始想不画图做这个题(然后脑袋就炸了,思维能力有待提高) 我的做法是动态规划+贪心+构造 首先把题目给的树变成一个可行的情况,同时weight最小 这个可以通过动态规划解决 dp[x]表示以x ...

  3. [洛谷P1887]乘积最大3

    题目大意:请你找出$m$个和为$n$的正整数,他们的乘积要尽可能的大.输出字典序最小的方案 题解:对于一些数,若它们的和相同,那么越接近它们的乘积越大. 卡点:无 C++ Code: #include ...

  4. 如何写出规范的JavaScript代码

    作为一名开发人员(WEB前端JavaScript开发),不规范的开发不仅使日后代码维护变的困难,同时也不利于团队的合作,通常还会带来代码安全以及执行效率上的问题.本人在开发工作中就曾与不按规范来开发的 ...

  5. [SDOI2016] 排列计数 (组合数学)

    [SDOI2016]排列计数 题目描述 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰 ...

  6. bzoj 2304 [Apio2011]寻路 Dij+模拟+恶心建图

    [Apio2011]寻路 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 624  Solved: 193[Submit][Status][Discus ...

  7. jquery中lhgdialog插件(一)

    一:前言 最近在使用jquery的控件,其实以前也写但是突然之间遇到了需要从弹出窗口传值到父窗口,突然觉得这种传值的方式其实也是需要javascript的基础的,但是我自己还没有去真正的做过,所以还是 ...

  8. [BZOJ1441&BZOJ2257&BZOJ2299]裴蜀定理

    裴蜀定理 对于整系数方程ax+by=m,设d =(a,b) 方程有整数解当且仅当d|m 这个定理实际上在之前学习拓展欧几里得解不定方程的时候就已经运用到 拓展到多元的方程一样适用 BZOJ1441 给 ...

  9. [BZOJ1025] [SCOI2009]游戏 解题报告

    Description windy学会了一种游戏.对于1到N这N个数字,都有唯一且不同的1到N的数字与之对应.最开始windy把数字按顺序1,2,3,……,N写一排在纸上.然后再在这一排下面写上它们对 ...

  10. 将setter方法与itemClick: 进行类比

        https://www.evernote.com/shard/s227/sh/a0c3afa3-8792-4756-8594-d2387a7f57ad/b561ff665af9ad401c8e ...