poj1840 Eqs(hash+折半枚举)
Description
a1x13+ a2x23+ a3x33+ a4x43+ a5x53=0
The coefficients are given integers from the interval [-50,50].
It is consider a solution a system (x1, x2, x3, x4, x5) that verifies the equation, xi∈[-50,50], xi != 0, any i∈{1,2,3,4,5}.
Determine how many solutions satisfy the given equation.
Input
Output
Sample Input
37 29 41 43 47
Sample Output
654
题意:求a1x13+ a2x23+ a3x33+ a4x43+ a5x53=0 在x∈[-50,50]且x!=0的解的个数
x1=a且x2=b与x1=b且x2=a算两个解
题解:因为a1,a2,a3,a4,a5是固定的,所以只需要枚举x1,x2,x3,x4,x5即可
复杂度为O(n^5)
等等!O(n^5)?!
这是要t的节奏啊
该怎么办呢?
改下公式吧~
a3x33+ a4x43+ a5x53=-a1x13 -a2x23
这样先枚举右边的解数,再枚举x3,x4,x5,看看满不满足右边即可
这种折半枚举的思路很好,至于如何检验满不满足,本来是准备用map的,结果t了
于是只好hash了……
最好打的hash704ms,好像也不坏
至于poj的abs……emmm也是醉了
代码如下:
#pragma GCC optimize(2)
#include<map>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define inf 0x3f3f3f3f
using namespace std; vector<long long> g[];
int a1,a2,a3,a4,a5,ans; int main()
{
scanf("%d%d%d%d%d",&a1,&a2,&a3,&a4,&a5);
for(int i=-; i<=; i++)
{
if(!i)
{
continue;
}
for(int j=-; j<=; j++)
{
if(!j)
{
continue;
}
long long x=a1*(i*i*i)+a2*(j*j*j);
int key=x<?(-x)%:x%;
g[key].push_back(x);
}
}
for(int i=-; i<=; i++)
{
if(!i)
{
continue;
}
for(int j=-; j<=; j++)
{
if(!j)
{
continue;
}
for(int k=-; k<=; k++)
{
if(!k)
{
continue;
}
long long y=a3*(i*i*i)+a4*(j*j*j)+a5*(k*k*k);
int key=y<?(-y)%:y%;
for(int w=;w<g[key].size();w++)
{
if(g[key][w]==-y)
{
ans++;
}
}
}
}
}
printf("%d\n",ans);
}
poj1840 Eqs(hash+折半枚举)的更多相关文章
- poj2002 Squares(hash+折半枚举)
Description A square is a 4-sided polygon whose sides have equal length and adjacent sides form 90-d ...
- 折半枚举+Hash(HDU1496升级版)
题目链接:N - 方程的解 给定一个四元二次方程: Ax1^2+Bx2^2+Cx3^2+Dx4^2=0 试求−1000≤x1,x2,x3,x4≤1000非零整数解的个数. −10000≤A,B,C,D ...
- Load Balancing 折半枚举大法好啊
Load Balancing 给出每个学生的学分. 将学生按学分分成四组,使得sigma (sumi-n/4)最小. 算法: 折半枚举 #include <iostrea ...
- CSU OJ PID=1514: Packs 超大背包问题,折半枚举+二分查找。
1514: Packs Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 61 Solved: 4[Submit][Status][Web Board] ...
- NYOJ 1091 超大01背包(折半枚举)
这道题乍一看是普通的01背包,最最基础的,但是仔细一看数据,发现普通的根本没法做,仔细观察数组发现n比较小,利用这个特点将它划分为前半部分和后半部分这样就好了,当时在网上找题解,找不到,后来在挑战程序 ...
- Codeforces 888E - Maximum Subsequence(折半枚举(meet-in-the-middle))
888E - Maximum Subsequence 思路:折半枚举. 代码: #include<bits/stdc++.h> using namespace std; #define l ...
- Codeforces 912 E.Prime Gift (折半枚举、二分)
题目链接:Prime Gift 题意: 给出了n(1<=n<=16)个互不相同的质数pi(2<=pi<=100),现在要求第k大个约数全在所给质数集的数.(保证这个数不超过1e ...
- poj_3977 折半枚举
题目大意 给定N(N<=35)个数字,每个数字都<= 2^15. 其中一个或多个数字加和可以得到s,求出s的绝对值的最小值,并给出当s取绝对值最小值时,需要加和的数字的个数. 题目分析 需 ...
- POJ 3977 Subset(折半枚举+二分)
SubsetTime Limit: 30000MS Memory Limit: 65536KTotal Submissions: 6754 Accepted: 1277 D ...
随机推荐
- 有关Botton的用法(二)
关于设置listener监听onClicked事件的步骤分析 Steps: 1.tell android you are interested in listening to a button cli ...
- CString 中的SpanIncluding 和SpanExcluding 用法
SpanIncluding 简单的理解就是提取包含在指定串中的一个子串 MSDN上的备注说:从左边的第一个字符开始查找与给定串相等的字符,如果没有则返回空的串,反之,继续查找,到结束. 例子方便理解 ...
- python3 安装 past 包
python3 安装 past 包 $ pip install future 错误现象 缺乏包的引用 from past.types import unicode 参考链接 https://pypi. ...
- 【转】Jmeter的正则表达式未正确提取数据
在进行脚本调试时,在Apply-Money-Page中需要Save-base中header的id参数,采用正则表达式提取器获取 使用正则表达式提取器,结果无法获取到需要的参数 最后定位是因为[?]是一 ...
- java中length的用法
总结:length是属性...有很多种,不仅仅是指长度 package com.c2; import java.io.BufferedReader; import java.io.IOExceptio ...
- js 格式化相关的时间
javascript Date format(js日期格式化) 方法一: // 对Date的扩展,将 Date 转化为指定格式的String // 月(M).日(d).小时(h).分(m).秒(s). ...
- 根文件系统的构建与分析(四)之瑞士军刀busybox生成系统基本命令
根文件系统的构建与分析(四) 转载请注明 http://blog.csdn.net/jianchi88 Author:Lotte 邮箱:baihaowen08@126.com ls /bin, ...
- springboot成神之——Basic Auth应用
本文介绍Basic Auth在spring中的应用 目录结构 依赖 入口DemoApplication 验证Authenication 配置WebSecurityConfig 控制器TestContr ...
- Windows下搭建PHP开发环境-WEB服务器
PHP集成开发环境有很多,如XAMPP.AppServ......只要一键安装就把PHP环境给搭建好了.但这种安装方式不够灵活,软件的自由组合不方便,同时也不利于学习.所以我还是喜欢手工搭建PHP开发 ...
- Python Twisted系列教程5:由Twisted支持的诗歌客户端
作者:dave@http://krondo.com/twistier-poetry/ 译者:杨晓伟(采用意译) 你可以从这里从头开始阅读这个系列 抽象地构建客户端 在第四部分中,我们构建了第一个使用 ...