poj1840 Eqs(hash+折半枚举)
Description
a1x13+ a2x23+ a3x33+ a4x43+ a5x53=0
The coefficients are given integers from the interval [-50,50].
It is consider a solution a system (x1, x2, x3, x4, x5) that verifies the equation, xi∈[-50,50], xi != 0, any i∈{1,2,3,4,5}.
Determine how many solutions satisfy the given equation.
Input
Output
Sample Input
37 29 41 43 47
Sample Output
654
题意:求a1x13+ a2x23+ a3x33+ a4x43+ a5x53=0 在x∈[-50,50]且x!=0的解的个数
x1=a且x2=b与x1=b且x2=a算两个解
题解:因为a1,a2,a3,a4,a5是固定的,所以只需要枚举x1,x2,x3,x4,x5即可
复杂度为O(n^5)
等等!O(n^5)?!
这是要t的节奏啊
该怎么办呢?
改下公式吧~
a3x33+ a4x43+ a5x53=-a1x13 -a2x23
这样先枚举右边的解数,再枚举x3,x4,x5,看看满不满足右边即可
这种折半枚举的思路很好,至于如何检验满不满足,本来是准备用map的,结果t了
于是只好hash了……
最好打的hash704ms,好像也不坏
至于poj的abs……emmm也是醉了
代码如下:
#pragma GCC optimize(2)
#include<map>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define inf 0x3f3f3f3f
using namespace std; vector<long long> g[];
int a1,a2,a3,a4,a5,ans; int main()
{
scanf("%d%d%d%d%d",&a1,&a2,&a3,&a4,&a5);
for(int i=-; i<=; i++)
{
if(!i)
{
continue;
}
for(int j=-; j<=; j++)
{
if(!j)
{
continue;
}
long long x=a1*(i*i*i)+a2*(j*j*j);
int key=x<?(-x)%:x%;
g[key].push_back(x);
}
}
for(int i=-; i<=; i++)
{
if(!i)
{
continue;
}
for(int j=-; j<=; j++)
{
if(!j)
{
continue;
}
for(int k=-; k<=; k++)
{
if(!k)
{
continue;
}
long long y=a3*(i*i*i)+a4*(j*j*j)+a5*(k*k*k);
int key=y<?(-y)%:y%;
for(int w=;w<g[key].size();w++)
{
if(g[key][w]==-y)
{
ans++;
}
}
}
}
}
printf("%d\n",ans);
}
poj1840 Eqs(hash+折半枚举)的更多相关文章
- poj2002 Squares(hash+折半枚举)
Description A square is a 4-sided polygon whose sides have equal length and adjacent sides form 90-d ...
- 折半枚举+Hash(HDU1496升级版)
题目链接:N - 方程的解 给定一个四元二次方程: Ax1^2+Bx2^2+Cx3^2+Dx4^2=0 试求−1000≤x1,x2,x3,x4≤1000非零整数解的个数. −10000≤A,B,C,D ...
- Load Balancing 折半枚举大法好啊
Load Balancing 给出每个学生的学分. 将学生按学分分成四组,使得sigma (sumi-n/4)最小. 算法: 折半枚举 #include <iostrea ...
- CSU OJ PID=1514: Packs 超大背包问题,折半枚举+二分查找。
1514: Packs Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 61 Solved: 4[Submit][Status][Web Board] ...
- NYOJ 1091 超大01背包(折半枚举)
这道题乍一看是普通的01背包,最最基础的,但是仔细一看数据,发现普通的根本没法做,仔细观察数组发现n比较小,利用这个特点将它划分为前半部分和后半部分这样就好了,当时在网上找题解,找不到,后来在挑战程序 ...
- Codeforces 888E - Maximum Subsequence(折半枚举(meet-in-the-middle))
888E - Maximum Subsequence 思路:折半枚举. 代码: #include<bits/stdc++.h> using namespace std; #define l ...
- Codeforces 912 E.Prime Gift (折半枚举、二分)
题目链接:Prime Gift 题意: 给出了n(1<=n<=16)个互不相同的质数pi(2<=pi<=100),现在要求第k大个约数全在所给质数集的数.(保证这个数不超过1e ...
- poj_3977 折半枚举
题目大意 给定N(N<=35)个数字,每个数字都<= 2^15. 其中一个或多个数字加和可以得到s,求出s的绝对值的最小值,并给出当s取绝对值最小值时,需要加和的数字的个数. 题目分析 需 ...
- POJ 3977 Subset(折半枚举+二分)
SubsetTime Limit: 30000MS Memory Limit: 65536KTotal Submissions: 6754 Accepted: 1277 D ...
随机推荐
- Oracle事务的隔离
事务是指一些列操作的集合,它有4个属性:原子性(Automacity).一致性(Consistency).隔离性(Isolation)和持久性(Durability),这4个属性简称为ACID.原子性 ...
- java代码逆序输出数字
总结:请告诉我更好的方法~~~总觉得不好. package com.badu; import java.util.Scanner; //逆序输出数字: // class fa { public sta ...
- java代码,输入n多个数,求其平均值,虽有重复,但是第二次,我就乱写了
总结:对象调用方法,与在main 里直接输出没什么大的区别,少用方法, 乱搞++++ package com.c2; import java.util.Scanner; public class DD ...
- 分布式缓存系统 Memcached 状态机之SET、GET命令
首先对状态机中的各种状态做个简单总结,具体可见状态转换示意图: 1.listening:这个状态是主线程的默认状态,它只有这一个状态:负责监听socket,接收客户连接,将连接socket派发给工作线 ...
- 杂项:WiKi
ylbtech-杂项:WiKi Wiki是一种在网络上开放且可供多人协同创作的超文本系统,由沃德·坎宁安于1995年首先开发,这种超文本系统支持面向社群的协作式写作,同时也包括一组支持这种写作.沃德· ...
- Java-Maven-Runoob:Maven Web 应用
ylbtech-Java-Maven-Runoob:Maven Web 应用 1.返回顶部 1. Maven Web 应用 本章节我们将学习如何使用版本控制系统 Maven 来管理一个基于 web 的 ...
- linux 输入子系统之电阻式触摸屏驱动
一.输入子系统情景回忆ING...... 在Linux中,输入子系统是由输入子系统设备驱动层.输入子系统核心层(Input Core)和输入子系统事件处理层(Event Handler)组成.其中设备 ...
- linux lcd设备驱动剖析四
在"linux lcd设备驱动剖析二"文章中,我们详细分析了s3c24xxfb_probe函数. 文章链接:http://blog.csdn.net/lwj103862095/ar ...
- 每天一个Linux命令 - 【groupadd】
[命令]:grouadd [语法]:groupadd [选项] [参数] [功能介绍]:groupadd 命令勇于创建新的工作组,新工作组的信息将被添加的系统文件中. [选项说明]: -g < ...
- openGL 纹理05
纹理(Texture) 为了能够把纹理映射(Map)到三角形上,我们需要指定三角形的每个顶点各自对应纹理的哪个部分. 这样每个顶点就会关联着一个纹理坐标(Texture Coordinate) 用来标 ...