Description

Consider equations having the following form: 
a1x13+ a2x23+ a3x33+ a4x43+ a5x53=0 
The coefficients are given integers from the interval [-50,50]. 
It is consider a solution a system (x1, x2, x3, x4, x5) that verifies the equation, xi∈[-50,50], xi != 0, any i∈{1,2,3,4,5}. 

Determine how many solutions satisfy the given equation. 

Input

The only line of input contains the 5 coefficients a1, a2, a3, a4, a5, separated by blanks.

Output

The output will contain on the first line the number of the solutions for the given equation.

Sample Input

37 29 41 43 47

Sample Output

654
题意:求a1x13+ a2x23+ a3x33+ a4x43+ a5x53=0 在x∈[-50,50]且x!=0的解的个数
x1=a且x2=b与x1=b且x2=a算两个解
题解:因为a1,a2,a3,a4,a5是固定的,所以只需要枚举x1,x2,x3,x4,x5即可
复杂度为O(n^5)
等等!O(n^5)?!
这是要t的节奏啊
该怎么办呢?
改下公式吧~
a3x33+ a4x43+ a5x53=-a1x13 -a2x23
这样先枚举右边的解数,再枚举x3,x4,x5,看看满不满足右边即可
这种折半枚举的思路很好,至于如何检验满不满足,本来是准备用map的,结果t了
于是只好hash了……
最好打的hash704ms,好像也不坏
至于poj的abs……emmm也是醉了
代码如下:
#pragma GCC optimize(2)
#include<map>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define inf 0x3f3f3f3f
using namespace std; vector<long long> g[];
int a1,a2,a3,a4,a5,ans; int main()
{
scanf("%d%d%d%d%d",&a1,&a2,&a3,&a4,&a5);
for(int i=-; i<=; i++)
{
if(!i)
{
continue;
}
for(int j=-; j<=; j++)
{
if(!j)
{
continue;
}
long long x=a1*(i*i*i)+a2*(j*j*j);
int key=x<?(-x)%:x%;
g[key].push_back(x);
}
}
for(int i=-; i<=; i++)
{
if(!i)
{
continue;
}
for(int j=-; j<=; j++)
{
if(!j)
{
continue;
}
for(int k=-; k<=; k++)
{
if(!k)
{
continue;
}
long long y=a3*(i*i*i)+a4*(j*j*j)+a5*(k*k*k);
int key=y<?(-y)%:y%;
for(int w=;w<g[key].size();w++)
{
if(g[key][w]==-y)
{
ans++;
}
}
}
}
}
printf("%d\n",ans);
}



poj1840 Eqs(hash+折半枚举)的更多相关文章

  1. poj2002 Squares(hash+折半枚举)

    Description A square is a 4-sided polygon whose sides have equal length and adjacent sides form 90-d ...

  2. 折半枚举+Hash(HDU1496升级版)

    题目链接:N - 方程的解 给定一个四元二次方程: Ax1^2+Bx2^2+Cx3^2+Dx4^2=0 试求−1000≤x1,x2,x3,x4≤1000非零整数解的个数. −10000≤A,B,C,D ...

  3. Load Balancing 折半枚举大法好啊

    Load Balancing 给出每个学生的学分.   将学生按学分分成四组,使得sigma (sumi-n/4)最小.         算法:   折半枚举 #include <iostrea ...

  4. CSU OJ PID=1514: Packs 超大背包问题,折半枚举+二分查找。

    1514: Packs Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 61  Solved: 4[Submit][Status][Web Board] ...

  5. NYOJ 1091 超大01背包(折半枚举)

    这道题乍一看是普通的01背包,最最基础的,但是仔细一看数据,发现普通的根本没法做,仔细观察数组发现n比较小,利用这个特点将它划分为前半部分和后半部分这样就好了,当时在网上找题解,找不到,后来在挑战程序 ...

  6. Codeforces 888E - Maximum Subsequence(折半枚举(meet-in-the-middle))

    888E - Maximum Subsequence 思路:折半枚举. 代码: #include<bits/stdc++.h> using namespace std; #define l ...

  7. Codeforces 912 E.Prime Gift (折半枚举、二分)

    题目链接:Prime Gift 题意: 给出了n(1<=n<=16)个互不相同的质数pi(2<=pi<=100),现在要求第k大个约数全在所给质数集的数.(保证这个数不超过1e ...

  8. poj_3977 折半枚举

    题目大意 给定N(N<=35)个数字,每个数字都<= 2^15. 其中一个或多个数字加和可以得到s,求出s的绝对值的最小值,并给出当s取绝对值最小值时,需要加和的数字的个数. 题目分析 需 ...

  9. POJ 3977 Subset(折半枚举+二分)

    SubsetTime Limit: 30000MS        Memory Limit: 65536KTotal Submissions: 6754        Accepted: 1277 D ...

随机推荐

  1. Debian上启用Apache2服务

    在Debian上启用Apache2的方法如下: sudo apt-get update sudo apt-get install -y apache2 sudo service apache2 sta ...

  2. 微信小程序,请求php后台返回json数据多出隐藏字符问题

    这几天在做一个微信小程序注册登录页面的时候碰到一个问题,就是使用wx.request api的时候success中返回的JSON数据前面会多出空白字符,后面网上查了一下是说php bom头问题(详细介 ...

  3. ubuntu为什么没有/etc/inittab文件? 深究ubuntu的启动流程分析

    Linux 内核启动 init ,init进程ID是1,是所有进程的父进程,所有进程由它控制. Ubuntu 的启动由upstart控制,自9.10后不再使用/etc/event.d目录的配置文件,改 ...

  4. 【转】JMeter工作基本原理

    JMeter可以作为Web服务器与浏览器之间的代理网关,以便捕获浏览器的请求和Web服务器的响应,这样就很容易地生成性能测试脚本, 有了性能测试脚本,JMeter就可以通过线程组来模拟真实用户对Web ...

  5. kali下启动postgresql

    1.service postgresql start 2.su postgres 3.psql

  6. explain解析

    MySQL执行计划调用方式执行计划包含的信息执行计划显示内容解读MySQL执行计划的局限MySQL5.6支持OPTIMIZER_TRACE 1.什么是归并排序?将已有序的子序列合并,得到完全有序的序列 ...

  7. 登陆验证系统实例-三种(cookie,session,auth)

    登陆验证 因为http协议是无状态协议,但是我们有时候需要这个状态,这个状态就是标识 前端提交from表单,后端获取对应输入值,与数据库对比,由此对象设置一个标识,该对象 在别的视图的时候,有此标识, ...

  8. mysql库操作

    一 系统数据库 information_schema: 虚拟库,不占用磁盘空间,存储的是数据库启动后的一些参数,如用户表信息.列信息.权限信息.字符信息等performance_schema: MyS ...

  9. 【面试】D

    昨天去了慕名已久的Dell面试(Dell自2015年退出了世界500强的评比),一面基本合格,二面基本没答上... 对公司的整体印象非常好(每个人桌上都有两台很大的显示器:9:00-15:30,如果能 ...

  10. 循序渐进Python3(十一) --4--  web之jQuery

      jQuery         jQuery是一个快速.简洁的JavaScript框架,是继Prototype之后又一个优秀的JavaScript代码库(或JavaScript框架).jQuery设 ...