NOIP2003 神经网络

题目背景:

人工神经网络(Artificial Neural Network)是一种新兴的具有自我学习能力的计算系统,在模式识别、函数逼近及贷款风险评估等诸多领域有广泛的应用。对神经网络的研究一直是当今的热门方向,兰兰同学在自学了一本神经网络的入门书籍后,提出了一个简化模型,他希望你能帮助他用程序检验这个神经网络模型的实用性。

题目描述:

在兰兰的模型中,神经网络就是一张有向图,图中的节点称为神经元,而且两个神经元之间至多有一条边相连,下图是一个神经元的例子:

神经元〔编号为1)

图中,X1―X3是信息输入渠道,Y1-Y2是信息输出渠道,C1表示神经元目前的状态,Ui是阈值,可视为神经元的一个内在参数。

神经元按一定的顺序排列,构成整个神经网络。在兰兰的模型之中,神经网络中的神经无分为几层;称为输入层、输出层,和若干个中间层。每层神经元只向下一层的神经元输出信息,只从上一层神经元接受信息。下图是一个简单的三层神经网络的例子。

兰兰规定,Ci服从公式:(其中n是网络中所有神经元的数目)

公式中的Wji(可能为负值)表示连接j号神经元和 i号神经元的边的权值。当 Ci大于0时,该神经元处于兴奋状态,否则就处于平静状态。当神经元处于兴奋状态时,下一秒它会向其他神经元传送信号,信号的强度为Ci。

如此.在输入层神经元被激发之后,整个网络系统就在信息传输的推动下进行运作。现在,给定一个神经网络,及当前输入层神经元的状态(Ci),要求你的程序运算出最后网络输出层的状态。

Input:

每组输入第一行是两个整数 nnn(1≤n≤1001≤n≤1001≤n≤100)和 ppp。接下来 nnn 行,每行两个整数,第 i+1i+1i+1 行是神经元 iii 最初状态和其阈值(UiU_iUi​),非输入层的神经元开始时状态必然为 000。再下面 PPP 行,每行由两个整数 iii,jjj 及一个整数 WijW_{ij}Wij​,表示连接神经元 iii、jjj 的边权值为 WijW_{ij}Wij​。

Output:

每组输出包含若干行,每行有两个整数,分别对应一个神经元的编号,及其最后的状态,两个整数间以空格分隔。仅仅输出最后状态大于零的输出层神经元状态,并且按照编号由小到大顺序输出!

若输出层的神经元最后状态均为 0,则输出 NULL。

Sample Input:

5 6
1 0
1 0
0 1
0 1
0 1
1 3 1
1 4 1
1 5 1
2 3 1
2 4 1
2 5 1

Sample Output:

3 1
4 1
5 1

题解:

直接bfs就可以了,当从队列里面取出来一个点后,必然上一层的已经对它传输完。

这里需要注意的是,起始点不会减去它的阀值。

代码如下:

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <queue>
using namespace std; const int N = ,M = ;
int n,p,tot;
int U[N],in[N],out[N],head[N],vis[N];
long long c[N]; struct Edge{
int u,v,next,w;
}e[M]; void adde(int u,int v,int w){
e[++tot].u=u;e[tot].v=v;e[tot].w=w;
e[tot].next=head[u];head[u]=tot;
} int main(){
scanf("%d%d",&n,&p);
memset(head,-,sizeof(head));memset(in,,sizeof(in));memset(out,,sizeof(out));tot=;
for(int i=;i<=n;i++) scanf("%lld%d",&c[i],&U[i]);
for(int i=,u,v,w;i<=p;i++){
scanf("%d%d%d",&u,&v,&w);
adde(u,v,w);
out[u]++;in[v]++;
}
queue<int> q;
for(int i=;i<=n;i++) if(c[i]) q.push(i);
memset(vis,,sizeof(vis));
while(!q.empty()){
int u=q.front();q.pop();
if(c[u]<=) continue;
for(int i=head[u];i!=-;i=e[i].next){
int v=e[i].v;
c[v]+=e[i].w*c[u];
if(!vis[v]){
q.push(v);
vis[v]=;c[v]-=U[v];
}
}
}
int cnt = ;
for(int i=;i<=n;i++){
if(!out[i] &&c[i]>){
cnt++;
printf("%d %lld\n",i,c[i]);
}
}
if(!cnt) cout<<"NULL"<<endl;
return ;
}

NOIP2003 神经网络(bfs)的更多相关文章

  1. NOIP2003神经网络[BFS]

    题目背景 人工神经网络(Artificial Neural Network)是一种新兴的具有自我学习能力的计算系统,在模式识别.函数逼近及贷款风险评估等诸多领域有广泛的应用.对神经网络的研究一直是当今 ...

  2. 3076: 神经网络(bfs和拓扑排序)

    3076: 神经网络 时间限制: 1 Sec  内存限制: 125 MB提交: 7  解决: 5[提交][状态][讨论版][命题人:外部导入][Edit] [TestData] [同步数据] 题目描述 ...

  3. NOIP2003 神经网络

    题目背景 人工神经网络(Artificial Neural Network)是一种新兴的具有自我学习能力的计算系统,在模式识别.函数逼近及贷款风险评估等诸多领域有广泛的应用.对神经网络的研究一直是当今 ...

  4. topsort | | jzoj[1226] | | NOIP2003神经网络

    今天终于通过了那道永远都看不懂题目的神经网络... 所谓拓扑排序,就是在有向无环图中,根据已经有的点和点之间的关系进行排序 引用jzyz教材上的栗子:比如说奶牛比较食量大小,我现在拿到的是cow[i] ...

  5. NOIP 2003 神经网络

    洛谷 P1038 神经网络 https://www.luogu.org/problemnew/show/P1038 JDOJ 1278: [NOIP2003]神经网络 T1 https://neooj ...

  6. 洛谷P1038 神经网络(bfs,模拟,拓扑)

    题目背景 人工神经网络(Artificial Neural NetworkArtificialNeuralNetwork)是一种新兴的具有自我学习能力的计算系统,在模式识别.函数逼近及贷款风险评估等诸 ...

  7. 题解 【NOIP2003】神经网络

    [NOIP2003]神经网络 Description 问题背景: 人工神经网络( Artificial Neural Network )是一种新兴的具有自我学习能力的计算系统,在模式识别.函数逼近及贷 ...

  8. 题解【洛谷P1038/CJOJ1707】[NOIP2003提高组]神经网络

    [NOIP2003]神经网络 Description 问题背景:人工神经网络( Artificial Neural Network )是一种新兴的具有自我学习能力的计算系统,在模式识别.函数逼近及贷款 ...

  9. [NOIP2003] 提高组 洛谷P1038 神经网络

    题目背景 人工神经网络(Artificial Neural Network)是一种新兴的具有自我学习能力的计算系统,在模式识别.函数逼近及贷款风险评估等诸多领域有广泛的应用.对神经网络的研究一直是当今 ...

随机推荐

  1. ctf题目writeup(4)

    2019.1.31 题目:这次都是web的了...(自己只略接触隐写杂项web这些简单的东西...) 题目地址:https://www.ichunqiu.com/battalion 1. 打开链接: ...

  2. 浅析 Linux 初始化 init 系统,Systemd

    原文地址:http://www.ibm.com/developerworks/cn/linux/1407_liuming_init3/ Systemd 的简介和特点 Systemd 是 Linux 系 ...

  3. VS2010安装MVC3出错

             开始已经在电脑上安装了VS2010以及SP1,还装了MVC4的相关升级包.最后项目中又要用MVC3,然后又去安装MVC3的安装包,但是在安装的过程就出现了问题.一直安装不成功,最后在 ...

  4. 【APUE】Chapter13 Daemon Processes

    这章节内容比较紧凑,主要有5部分: 1. 守护进程的特点 2. 守护进程的构造步骤及原理. 3. 守护进程示例:系统日志守护进程服务syslogd的相关函数. 4. Singe-Instance 守护 ...

  5. 用gradle编译任意结构的Android项目

    ## 需求 * 继续用`Eclipse`项目的结构,但是使用`gradle`编译,或者说任意的项目结构进行编译. ## 解决方案 1. Android studio的项目结构 1. Android S ...

  6. spring mvc 返回xml格式数据

    1.问题 : 因为业务需要,需要发送xml格式的数据,使用spring mvc 自己解析,就不用费心去自己搞这些东西. 2.解决: 新建一个实体类,直接在实体类中添加注解即可,如下: @XmlRoot ...

  7. PL/SQL查看表结构

    SET LONG 99999;SET LINESIZE 140 PAGESIZE 1000;SELECT DBMS_METADATA.GET_DDL('&OBJECT_TYPE','& ...

  8. 洛谷P2346四子连棋

    题目描述 在一个4*4的棋盘上摆放了14颗棋子,其中有7颗白色棋子,7颗黑色棋子,有两个空白地带,任何一颗黑白棋子都可以向上下左右四个方向移动到相邻的空格,这叫行棋一步. 黑白双方交替走棋,任意一方可 ...

  9. LeetCode 4——两个排序数组中的中位数

    1. 题目 2. 解答 2.1. 方法一 由于两个数组都是排好序的,因此首先可以想到的思路就是利用归并排序把两个数组合并成一个有序的长数组,然后直接取出中位数即可. class Solution: d ...

  10. Halcon17对硬件配置要求

     Halcon17对硬件配置要求 Halcon17已经发布出来了,很多朋友一定想安装这款机器视觉软件来学习,我们今天给大家讲解下,Halcon17对硬件配置的要求: Halcon17 For Wind ...