BZOJ2118 墨墨的等式 【最短路】
题目链接
题解
orz竟然是最短路
我们去\(0\)后取出最小的\(a[i]\),记为\(p\),然后考虑模\(p\)下的\(B\)
一个数\(i\)能被凑出,那么\(i + p\)也能被凑出
所以我们只需找出最小的凑出\(i\)的代价
我们如果将同余下的和看作点,那么加上一个数就相当于在点间转移的边
所以我们只需跑最短路即可求出每个\(i\)的最小代价,然后就可以计算\(Bmin\)和\(Bmax\)以内分别有多少个\(i\)
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
#include<cmath>
#include<map>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
using namespace std;
const int maxn = 500005,maxm = 5000005;
const LL INF = 100000000000000001ll;
inline LL read(){
LL out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
struct node{
int u; LL d;
};
inline bool operator <(const node& a,const node& b){
return a.d > b.d;
}
inline bool operator ==(const node& a,const node& b){
return a.u == b.u && a.d == b.d;
}
struct Heap{
priority_queue<node> a,b;
void ck(){while (!b.empty() && a.top() == b.top()) a.pop(),b.pop();}
int size(){return a.size() - b.size();}
node top(){ck(); node x = a.top(); a.pop(); return x;}
void del(node x){ck(); b.push(x);}
void ins(node x){ck(); a.push(x);}
}H;
int N,a[maxn],P;
LL d[maxn]; int vis[maxn];
int h[maxn],ne;
struct EDGE{int to,nxt,w;}ed[maxm];
inline void build(int u,int v,int w){
ed[++ne] = (EDGE){v,h[u],w}; h[u] = ne;
}
void work(){
for (int i = 0; i < P; i++){
for (int j = 1; j <= N; j++)
build(i,(i + a[j]) % P,a[j]);
}
for (int i = 1; i < P; i++) d[i] = INF;
d[0] = 0; H.ins((node){0,d[0]}); vis[0] = true;
node u;
while (H.size()){
u = H.top();
Redge(u.u) if (!vis[to = ed[k].to] && d[to] > d[u.u] + ed[k].w){
if (d[to] != INF) H.del((node){to,d[to]});
d[to] = d[u.u] + ed[k].w;
H.ins((node){to,d[to]});
}
}
}
int main(){
N = read(); LL L = read(),R = read(); P = INF;
REP(i,N){
a[i] = read();
if (!a[i]) i--,N--;
}
if (!N){
if (L) puts("0");
else puts("1");
return 0;
}
REP(i,N) P = min(P,a[i]);
work();
L--;
LL ansl = 0,ansr = 0;
for (int i = 0; i < P; i++){
if (d[i] <= L){
ansl++;
ansl += (L - d[i]) / P;
}
if (d[i] <= R){
ansr++;
ansr += (R - d[i]) / P;
}
}
printf("%lld\n",ansr - ansl);
return 0;
}
BZOJ2118 墨墨的等式 【最短路】的更多相关文章
- 【BZOJ2118】墨墨的等式(最短路)
[BZOJ2118]墨墨的等式(最短路) 题面 BZOJ 洛谷 题解 和跳楼机那题是一样的. 只不过走的方式从\(3\)种变成了\(n\)种而已,其他的根本没有区别了. #include<ios ...
- 【BZOJ2118】墨墨的等式 最短路
[BZOJ2118]墨墨的等式 Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值 ...
- BZOJ2118:墨墨的等式(最短路)
Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在 ...
- BZOJ2118: 墨墨的等式(最短路 数论)
题意 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在非负整数解. So ...
- BZOJ2118: 墨墨的等式(最短路构造/同余最短路)
Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在 ...
- BZOJ2118墨墨的等式[数论 最短路建模]
2118: 墨墨的等式 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 1317 Solved: 504[Submit][Status][Discus ...
- Bzoj2118 墨墨的等式
Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 1488 Solved: 578 Description 墨墨突然对等式很感兴趣,他正在研究a1x1+ ...
- bzoj 2118 墨墨的等式 - 图论最短路建模
墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在非负整数解. Input ...
- 【BZOJ 2118】 2118: 墨墨的等式 (最短路)
2118: 墨墨的等式 Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求 ...
随机推荐
- MINA 框架总结 整体理解
MINA是一套成熟的JAVA NIO 框架,在用到Socket通信的Java应用场景中经常会得到使用.其作者还有一套更加知名的框架Netty,其应用程度更加广泛.虽然不及Netty知名,Mina也是一 ...
- Laravel -- 模型
模型文件 <?php namespace App; use Illuminate\Database\Eloquent\Model; class Student extends Model { / ...
- pyc是个什么鬼?
1.Python是一门解释型语音? 我初学Python时,听到的关于Python的第一句话就是,Python是一门解释型语音,我就这样一直相信下去,知道发现了*.pyc文件的存在.如果是解释型语音,那 ...
- java元注解(注解在注解上的注解)
//ElementType.TYPE 给类.接口.枚举上使用 @Target(ElementType.TYPE)//给注解进行注解,表示该注解可以用在什么地方 //@Retention(Retenti ...
- linux ln 建立软链接-- 基于dubbo-zookeeper服务的 服务jar 引用公共的 lib
对于ln命令网上有很多的教程,这里不再复述, 其基本目的是:多个文件夹公用一个文件夹的里的文件. 其基本命令格式: ln [option] source_file dist_file (source_ ...
- Eclipse报错:An internal error occurred during: "Building workspace". Java heap space),卡死解决办法
在项目工程的根目录下,找到.project,用记事本打开,把两处删除掉: 第一处: <buildCommand> <name>org.eclipse.wst.jsdt.core ...
- 浅析 Linux 初始化 init 系统,Systemd
原文地址:http://www.ibm.com/developerworks/cn/linux/1407_liuming_init3/ Systemd 的简介和特点 Systemd 是 Linux 系 ...
- JAVA中堆栈和内存分配详解(摘抄)
在Java中,有六个不同的地方可以存储数据: 1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制. 2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存 ...
- ip4addr_ntoa和不可重入函数
在网络中,有一个转换IP地址到ASIIC字符串的函数,该函数的返回值所指向的ASIIC字符串驻留在静态内存中,所以该函数不可重入. 通俗的讲,在多任务系统中,一个任务执行在调用运行这个函数的时候,其他 ...
- Spring研磨分析、Quartz任务调度、Hibernate深入浅出系列文章笔记汇总
Spring研磨分析.Quartz任务调度.Hibernate深入浅出系列文章笔记汇总 置顶2017年04月27日 10:46:45 阅读数:1213 这系列文章主要是对Spring.Quartz.H ...