BZOJ2118 墨墨的等式 【最短路】
题目链接
题解
orz竟然是最短路
我们去\(0\)后取出最小的\(a[i]\),记为\(p\),然后考虑模\(p\)下的\(B\)
一个数\(i\)能被凑出,那么\(i + p\)也能被凑出
所以我们只需找出最小的凑出\(i\)的代价
我们如果将同余下的和看作点,那么加上一个数就相当于在点间转移的边
所以我们只需跑最短路即可求出每个\(i\)的最小代价,然后就可以计算\(Bmin\)和\(Bmax\)以内分别有多少个\(i\)
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
#include<cmath>
#include<map>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
using namespace std;
const int maxn = 500005,maxm = 5000005;
const LL INF = 100000000000000001ll;
inline LL read(){
LL out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
struct node{
int u; LL d;
};
inline bool operator <(const node& a,const node& b){
return a.d > b.d;
}
inline bool operator ==(const node& a,const node& b){
return a.u == b.u && a.d == b.d;
}
struct Heap{
priority_queue<node> a,b;
void ck(){while (!b.empty() && a.top() == b.top()) a.pop(),b.pop();}
int size(){return a.size() - b.size();}
node top(){ck(); node x = a.top(); a.pop(); return x;}
void del(node x){ck(); b.push(x);}
void ins(node x){ck(); a.push(x);}
}H;
int N,a[maxn],P;
LL d[maxn]; int vis[maxn];
int h[maxn],ne;
struct EDGE{int to,nxt,w;}ed[maxm];
inline void build(int u,int v,int w){
ed[++ne] = (EDGE){v,h[u],w}; h[u] = ne;
}
void work(){
for (int i = 0; i < P; i++){
for (int j = 1; j <= N; j++)
build(i,(i + a[j]) % P,a[j]);
}
for (int i = 1; i < P; i++) d[i] = INF;
d[0] = 0; H.ins((node){0,d[0]}); vis[0] = true;
node u;
while (H.size()){
u = H.top();
Redge(u.u) if (!vis[to = ed[k].to] && d[to] > d[u.u] + ed[k].w){
if (d[to] != INF) H.del((node){to,d[to]});
d[to] = d[u.u] + ed[k].w;
H.ins((node){to,d[to]});
}
}
}
int main(){
N = read(); LL L = read(),R = read(); P = INF;
REP(i,N){
a[i] = read();
if (!a[i]) i--,N--;
}
if (!N){
if (L) puts("0");
else puts("1");
return 0;
}
REP(i,N) P = min(P,a[i]);
work();
L--;
LL ansl = 0,ansr = 0;
for (int i = 0; i < P; i++){
if (d[i] <= L){
ansl++;
ansl += (L - d[i]) / P;
}
if (d[i] <= R){
ansr++;
ansr += (R - d[i]) / P;
}
}
printf("%lld\n",ansr - ansl);
return 0;
}
BZOJ2118 墨墨的等式 【最短路】的更多相关文章
- 【BZOJ2118】墨墨的等式(最短路)
[BZOJ2118]墨墨的等式(最短路) 题面 BZOJ 洛谷 题解 和跳楼机那题是一样的. 只不过走的方式从\(3\)种变成了\(n\)种而已,其他的根本没有区别了. #include<ios ...
- 【BZOJ2118】墨墨的等式 最短路
[BZOJ2118]墨墨的等式 Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值 ...
- BZOJ2118:墨墨的等式(最短路)
Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在 ...
- BZOJ2118: 墨墨的等式(最短路 数论)
题意 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在非负整数解. So ...
- BZOJ2118: 墨墨的等式(最短路构造/同余最短路)
Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在 ...
- BZOJ2118墨墨的等式[数论 最短路建模]
2118: 墨墨的等式 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 1317 Solved: 504[Submit][Status][Discus ...
- Bzoj2118 墨墨的等式
Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 1488 Solved: 578 Description 墨墨突然对等式很感兴趣,他正在研究a1x1+ ...
- bzoj 2118 墨墨的等式 - 图论最短路建模
墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在非负整数解. Input ...
- 【BZOJ 2118】 2118: 墨墨的等式 (最短路)
2118: 墨墨的等式 Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求 ...
随机推荐
- ECSHOP和SHOPEX快递单号查询韵达插件V8.6专版
发布ECSHOP说明: ECSHOP快递物流单号查询插件特色 本ECSHOP快递物流单号跟踪插件提供国内外近2000家快递物流订单单号查询服务例如申通快递.顺丰快递.圆通快递.EMS快递.汇通快递.宅 ...
- JAVA大作业汇总1
JAVA大作业 代码 ``` package thegreatwork; import javafx.application.; import javafx.scene.control.; impor ...
- Python: 列表的两种遍历方法
方法一:以列表中元素的下标进行访问 def traverse1(list1): for i in range(len(list1)): print(list1[i], end=' ') print() ...
- 我的阿里之路+Java面经考点
我的阿里之路+Java面经考点 时间:2018-03-19 23:03 来源:未知 作者:admin 点击:87次 我的2017是忙碌的一年,从年初备战实习春招,年三十都在死磕JDK源码,三 ...
- 链接程序的时候遇到问题:fatal error LNK1104: cannot open file 'rctrl-d.lib'
1.lib库文件没有添加到工程中(工程里面根本就没有这个文件) 2.
- tp5.0 模型查询数据的返回类型,分页
一开始用painate()这个函数的时候,发现有的查询方式不能使用这个函数,由此了解到了模型查询和普通查询返回类型的不同 1.原生查询方法 Db::query("select * from ...
- cocos2d-x 粒子系统
粒子系统是模拟自然界中的一些粒子的物理运动的效果,如烟雾,下雪,下雨,火,爆炸等. 粒子发射模式 粒子系统的发射模式的时候有两种方式:重力模式和半径模式. 粒子系统属性 属性名 行为 模式 d ...
- java设计模式之装饰器模式以及在java中作用
在JAVA I/O类库里有很多不同的功能组合情况,这些不同的功能组合都是使用装饰器模式实现的,下面以FilterInputStream为例介绍装饰器模式的使用 FilterInputStream和F ...
- Spark实战练习01--XML数据处理
一.要求 将XML中的account_number.model数据提取出来,并以account_number:model格式存储 1.XML文件数据格式 <activations> < ...
- not1,not2,bind1st,bind2nd
例子需要包含头文件 #include <vector> #include <algorithm> #include <functional> bind1st和bin ...