Description

Did you know that you can use domino bones for other things besides playing Dominoes? Take a number of dominoes and build a row by standing them on end with only a small distance in between. If you do it right, you can tip the first domino and cause all others to fall down in succession (this is where the phrase ``domino effect'' comes from).

While
this is somewhat pointless with only a few dominoes, some people went to
the opposite extreme in the early Eighties. Using millions of dominoes
of different colors and materials to fill whole halls with elaborate
patterns of falling dominoes, they created (short-lived) pieces of art.
In these constructions, usually not only one but several rows of
dominoes were falling at the same time. As you can imagine, timing is an
essential factor here.

It is now your task to write a program
that, given such a system of rows formed by dominoes, computes when and
where the last domino falls. The system consists of several ``key
dominoes'' connected by rows of simple dominoes. When a key domino
falls, all rows connected to the domino will also start falling (except
for the ones that have already fallen). When the falling rows reach
other key dominoes that have not fallen yet, these other key dominoes
will fall as well and set off the rows connected to them. Domino rows
may start collapsing at either end. It is even possible that a row is
collapsing on both ends, in which case the last domino falling in that
row is somewhere between its key dominoes. You can assume that rows fall
at a uniform rate.

Input

The
input file contains descriptions of several domino systems. The first
line of each description contains two integers: the number n of key
dominoes (1 <= n < 500) and the number m of rows between them. The
key dominoes are numbered from 1 to n. There is at most one row between
any pair of key dominoes and the domino graph is connected, i.e. there
is at least one way to get from a domino to any other domino by
following a series of domino rows.

The following m lines each
contain three integers a, b, and l, stating that there is a row between
key dominoes a and b that takes l seconds to fall down from end to end.

Each system is started by tipping over key domino number 1.

The file ends with an empty system (with n = m = 0), which should not be processed.

Output

For
each case output a line stating the number of the case ('System #1',
'System #2', etc.). Then output a line containing the time when the last
domino falls, exact to one digit to the right of the decimal point, and
the location of the last domino falling, which is either at a key
domino or between two key dominoes(in this case, output the two numbers
in ascending order). Adhere to the format shown in the output sample.
The test data will ensure there is only one solution. Output a blank
line after each system.

Sample Input

2 1
1 2 27
3 3
1 2 5
1 3 5
2 3 5
0 0

Sample Output

System #1
The last domino falls after 27.0 seconds, at key domino 2. System #2
The last domino falls after 7.5 seconds, between key dominoes 2 and 3.

Source

Southwestern Europe 1996

 #include <stdio.h>
#include <iostream>
#include <queue>
#include <vector>
#define MAXN 600
#define inf 0x3f3f3f3f
using namespace std; struct Node{
int end;
double dis;
}; int n,m;
double dist[MAXN];
vector<Node> V[MAXN]; void spfa(){
for(int i=; i<=n; i++,dist[i]=inf);
dist[]=;
queue<Node> Q;
Node n1;
n1.end=;
n1.dis=;
Q.push(n1);
while( !Q.empty() ){
Node now=Q.front();
Q.pop();
for(int i=; i<V[now.end].size(); i++){
Node temp=V[now.end][i];
double v=temp.dis+now.dis;
if( v < dist[temp.end]){
dist[temp.end]=v;
temp.dis=v;
Q.push(temp);
}
}
}
} int main()
{
int c=;
while( scanf("%d %d",&n ,&m)!=EOF ){
if(n== && m==)break;
for(int i=; i<=n; i++){
V[i].clear();
}
int a,b,l;
for(int i=; i<m; i++){
scanf("%d %d %d",&a ,&b ,&l);
Node n1,n2;
n1.end=b;
n1.dis=l;
V[a].push_back(n1);
n2.end=a;
n2.dis=l;
V[b].push_back(n2);
}
spfa();
double ans=-;
int k=;
for(int i=; i<=n; i++){
if(dist[i]>ans){
ans=dist[i];
k=i;
}
}
int flag=,t1,t2;
for(int i=; i<=n; i++){
for(int j=; j<V[i].size(); j++){
int to=V[i][j].end;
double dis=V[i][j].dis;
if( (dist[i]+dis+dist[to])/>ans ){
flag=;
ans=(dist[i]+dis+dist[to])/;
t1=i;
t2=to;
}
}
}
printf("System #%d\n",++c);
if(flag){
printf("The last domino falls after %.1lf seconds, between key dominoes %d and %d.\n"
,ans ,min(t1,t2) ,max(t1,t2));
}else{
printf("The last domino falls after %.1lf seconds, at key domino %d.\n",ans,k);
}
puts("");
}
return ;
}

TOJ 1883 Domino Effect的更多相关文章

  1. CF 405B Domino Effect(想法题)

    题目链接: 传送门 Domino Effect time limit per test:1 second     memory limit per test:256 megabytes Descrip ...

  2. [ACM_图论] Domino Effect (POJ1135 Dijkstra算法 SSSP 单源最短路算法 中等 模板)

    Description Did you know that you can use domino bones for other things besides playing Dominoes? Ta ...

  3. POJ 1135 Domino Effect(Dijkstra)

    点我看题目 题意 : 一个新的多米诺骨牌游戏,就是这个多米诺骨中有许多关键牌,他们之间由一行普通的骨牌相连接,当一张关键牌倒下的时候,连接这个关键牌的每一行都会倒下,当倒下的行到达没有倒下的关键牌时, ...

  4. POJ 1135 Domino Effect (spfa + 枚举)- from lanshui_Yang

    Description Did you know that you can use domino bones for other things besides playing Dominoes? Ta ...

  5. UVA211-The Domino Effect(dfs)

    Problem UVA211-The Domino Effect Accept:536  Submit:2504 Time Limit: 3000 mSec  Problem Description ...

  6. POJ 1135 Domino Effect (Dijkstra 最短路)

    Domino Effect Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9335   Accepted: 2325 Des ...

  7. POJ 1135.Domino Effect Dijkastra算法

    Domino Effect Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10325   Accepted: 2560 De ...

  8. zoj 1298 Domino Effect (最短路径)

    Domino Effect Time Limit: 2 Seconds      Memory Limit: 65536 KB Did you know that you can use domino ...

  9. [POJ] 1135 Domino Effect

    Domino Effect Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 12147 Accepted: 3046 Descri ...

随机推荐

  1. C#生成静态文件

    一般生成文件都是通过读取模板文件,然后替换标签. 这些古老的方法使用起来不但麻烦而且效率还不怎么样. 这里给添加介绍一个方法. 如果你用过asp.net.mvc (Razor),你就应该明白 chtm ...

  2. 【C#】 ref out

    ref 通常我们向方法中传递的是值,方法获得的是这些值的一个拷贝,然后使用这些拷贝,当方法运行完毕后,这些拷贝将被丢弃,而原来的值不会受到影响. 这种情况是通常的,当然还有另外一种情况,我们向方法传递 ...

  3. Go环境搭建(Windows)

    下载MSI MSI地址 配置环境变量 GOPATH: 用于存放Go语言Package的目录,这个目录不能在Go的安装目录中 GOBIN: Go二进制文件存放目录,写成%GOROOT%\bin就好 PA ...

  4. 关于小程序bindregionchange事件在IOS崩溃的问题

    先说下原因,我在bindregionchange事件触发函数中设置了经纬度,而latitude和longitude是绑定在map组件上的,滑动地图的过程中重新设置了地图中心点的经纬度,会导致地图本身的 ...

  5. 多线程《八》线程queue

    一 线程queue queue is especially useful in threaded programming when information must be exchanged safe ...

  6. 类1(this指针/const成员函数/类作用域/外部成员函数/返回this对象的函数)

    假设我们要设计一个包含以下操作的 Sales_data 类: 1.一个 isbn 成员函数,用于返回对象的 book_no 成员变量 2.一个 combine 成员函数,用于将一个 Sales_dat ...

  7. Linux 意外操作后如何进行数据抢救

    Linux 意外操作后如何进行数据抢救 在 GUI 中使用  shift + delete  组合键或是 CLI 下使用 rm -rf 删除选项,这个文件并没有从硬盘(或是其它存储设备)上彻底销毁.当 ...

  8. 5. 常见C语言字符串库函数的使用及实现

    1. strncat 函数: [函数原型]#include <string.h> char *strncat( char *str1, const char *str2, size_t c ...

  9. 跟我一起读postgresql源码(一)——psql命令

    进公司以来做的都是postgresql相关的东西,每次都是测试.修改边边角角的东西,这样感觉只能留在表面,不能深入了解这个开源数据库的精髓,遂想着看看postgresql的源码,以加深对数据库的理解, ...

  10. winform工具1-图片去除水印

    效果图: 思路: 1.获取图片 2.处理水印 3.保存处理的图片 代码: 获取图片: private void button1_Click(object sender, EventArgs e) { ...