TOJ 1883 Domino Effect
Description
Did you know that you can use domino bones for other things besides playing Dominoes? Take a number of dominoes and build a row by standing them on end with only a small distance in between. If you do it right, you can tip the first domino and cause all others to fall down in succession (this is where the phrase ``domino effect'' comes from).
While
this is somewhat pointless with only a few dominoes, some people went to
 the opposite extreme in the early Eighties. Using millions of dominoes
of different colors and materials to fill whole halls with elaborate
patterns of falling dominoes, they created (short-lived) pieces of art.
In these constructions, usually not only one but several rows of
dominoes were falling at the same time. As you can imagine, timing is an
 essential factor here.
It is now your task to write a program
that, given such a system of rows formed by dominoes, computes when and
where the last domino falls. The system consists of several ``key
dominoes'' connected by rows of simple dominoes. When a key domino
falls, all rows connected to the domino will also start falling (except
for the ones that have already fallen). When the falling rows reach
other key dominoes that have not fallen yet, these other key dominoes
will fall as well and set off the rows connected to them. Domino rows
may start collapsing at either end. It is even possible that a row is
collapsing on both ends, in which case the last domino falling in that
row is somewhere between its key dominoes. You can assume that rows fall
 at a uniform rate.
Input
The
 input file contains descriptions of several domino systems. The first
line of each description contains two integers: the number n of key
dominoes (1 <= n < 500) and the number m of rows between them. The
 key dominoes are numbered from 1 to n. There is at most one row between
 any pair of key dominoes and the domino graph is connected, i.e. there
is at least one way to get from a domino to any other domino by
following a series of domino rows.
The following m lines each
contain three integers a, b, and l, stating that there is a row between
key dominoes a and b that takes l seconds to fall down from end to end.
Each system is started by tipping over key domino number 1.
The file ends with an empty system (with n = m = 0), which should not be processed.
Output
For
 each case output a line stating the number of the case ('System #1',
'System #2', etc.). Then output a line containing the time when the last
 domino falls, exact to one digit to the right of the decimal point, and
 the location of the last domino falling, which is either at a key
domino or between two key dominoes(in this case, output the two numbers
in ascending order). Adhere to the format shown in the output sample.
The test data will ensure there is only one solution. Output a blank
line after each system.
Sample Input
2 1
1 2 27
3 3
1 2 5
1 3 5
2 3 5
0 0
Sample Output
System #1
The last domino falls after 27.0 seconds, at key domino 2. System #2
The last domino falls after 7.5 seconds, between key dominoes 2 and 3.
Source
#include <stdio.h>
#include <iostream>
#include <queue>
#include <vector>
#define MAXN 600
#define inf 0x3f3f3f3f
using namespace std; struct Node{
int end;
double dis;
}; int n,m;
double dist[MAXN];
vector<Node> V[MAXN]; void spfa(){
for(int i=; i<=n; i++,dist[i]=inf);
dist[]=;
queue<Node> Q;
Node n1;
n1.end=;
n1.dis=;
Q.push(n1);
while( !Q.empty() ){
Node now=Q.front();
Q.pop();
for(int i=; i<V[now.end].size(); i++){
Node temp=V[now.end][i];
double v=temp.dis+now.dis;
if( v < dist[temp.end]){
dist[temp.end]=v;
temp.dis=v;
Q.push(temp);
}
}
}
} int main()
{
int c=;
while( scanf("%d %d",&n ,&m)!=EOF ){
if(n== && m==)break;
for(int i=; i<=n; i++){
V[i].clear();
}
int a,b,l;
for(int i=; i<m; i++){
scanf("%d %d %d",&a ,&b ,&l);
Node n1,n2;
n1.end=b;
n1.dis=l;
V[a].push_back(n1);
n2.end=a;
n2.dis=l;
V[b].push_back(n2);
}
spfa();
double ans=-;
int k=;
for(int i=; i<=n; i++){
if(dist[i]>ans){
ans=dist[i];
k=i;
}
}
int flag=,t1,t2;
for(int i=; i<=n; i++){
for(int j=; j<V[i].size(); j++){
int to=V[i][j].end;
double dis=V[i][j].dis;
if( (dist[i]+dis+dist[to])/>ans ){
flag=;
ans=(dist[i]+dis+dist[to])/;
t1=i;
t2=to;
}
}
}
printf("System #%d\n",++c);
if(flag){
printf("The last domino falls after %.1lf seconds, between key dominoes %d and %d.\n"
,ans ,min(t1,t2) ,max(t1,t2));
}else{
printf("The last domino falls after %.1lf seconds, at key domino %d.\n",ans,k);
}
puts("");
}
return ;
}
TOJ 1883 Domino Effect的更多相关文章
- CF 405B Domino Effect(想法题)
		题目链接: 传送门 Domino Effect time limit per test:1 second memory limit per test:256 megabytes Descrip ... 
- [ACM_图论] Domino Effect (POJ1135 Dijkstra算法 SSSP 单源最短路算法 中等 模板)
		Description Did you know that you can use domino bones for other things besides playing Dominoes? Ta ... 
- POJ 1135  Domino Effect(Dijkstra)
		点我看题目 题意 : 一个新的多米诺骨牌游戏,就是这个多米诺骨中有许多关键牌,他们之间由一行普通的骨牌相连接,当一张关键牌倒下的时候,连接这个关键牌的每一行都会倒下,当倒下的行到达没有倒下的关键牌时, ... 
- POJ 1135 Domino Effect (spfa + 枚举)- from lanshui_Yang
		Description Did you know that you can use domino bones for other things besides playing Dominoes? Ta ... 
- UVA211-The Domino Effect(dfs)
		Problem UVA211-The Domino Effect Accept:536 Submit:2504 Time Limit: 3000 mSec Problem Description ... 
- POJ 1135 Domino Effect (Dijkstra 最短路)
		Domino Effect Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9335 Accepted: 2325 Des ... 
- POJ 1135.Domino Effect Dijkastra算法
		Domino Effect Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 10325 Accepted: 2560 De ... 
- zoj 1298 Domino Effect (最短路径)
		Domino Effect Time Limit: 2 Seconds Memory Limit: 65536 KB Did you know that you can use domino ... 
- [POJ] 1135 Domino Effect
		Domino Effect Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 12147 Accepted: 3046 Descri ... 
随机推荐
- Sql Server - CURSOR (游标)
			1.声明游标 DECLARE 游标名 CURSOR SELECT语句(注:此处一定是SELECT语句) 2.打开游标 OPEN 游标名 3.读取 ... 
- vue记住密码功能
			话不多说,直接上代码. html部分: <el-form :model="ruleForm2" :rules="rules2" ref="rul ... 
- android library使用方法
			一.Android library使用情景 通用模块的重复使用,项目做多了,其实都是差不多,核心模块基本无需大的改动,需要改的只是核心模块上的业务功能而已. Java中可以打包成库,或者说,单纯的ja ... 
- layui之弹出层--从父窗口传递数据到子窗口
			原文链接:https://blog.csdn.net/Code_shadow/article/details/80524633 var Index = layer.open({ title: &quo ... 
- Castle Windsor 注册组件
			1.逐个注册组件即对每个接口通过代码指定其实现类,代码: container.Register( Component.For<IMyService>() //接口 .Implemented ... 
- C# WPF Webbrowser 强制所有网页链接在同一页面打开
			只要搞懂Winform的 WPF稍微改一改就可以了 主类:负责跳转的 using System; using System.Collections.Generic; using System.Com ... 
- 「CF622F」The Sum of the k-th Powers「拉格朗日插值」
			题意 求\(\sum_{i=1}^n i^k\),\(n \leq 10^9,k \leq 10^6\) 题解 观察可得答案是一个\(k+1\)次多项式,我们找\(k+2\)个值带进去然后拉格朗日插值 ... 
- java中容器的概念
			容器:顾名思义,装东西的器物至于spring中bean,aop,ioc等一些都只是实现的方式具体容器哪些值得我们借鉴,我个人觉得是封装的思想.将你一个独立的系统功能放到一个容器之中,可以当做一个大的接 ... 
- gluster peer probe: failed: Probe returned with unknown errno 107解决方法
			当在glusterfs中将服务器加到存储池中,及运行”gluster peer probe server”命令, 遇到peer probe: failed: Probe returned with u ... 
- 堆排序工具类(适用于top k问题,java泛型实现)
			代码如下,作用如标题所述 public class HeapSort { //方法作用:取出list里面的最小的 k 个值 public static <T extends Comparable ... 
