HDU3790---(双权最短路径)
题目:http://acm.hdu.edu.cn/showproblem.php?pid=3790
最短路径问题
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 25271 Accepted Submission(s): 7541
(1<n<=1000, 0<m<100000, s != t)
#include "cstdio"
#include "cstring"
#include "algorithm"
#define inf 0x3f3f3f3f
int dis[],vis[],cost[];///dis存储各点到点s的长度
typedef struct{///路径模型
int lenth;///路长
int cost;///路费
}Path;
Path map1[][];///地图
void dijkstra(int n,int s,int t)
{
memset(vis,,sizeof(vis));
for(int i=;i<=n;i++){///原点为S
dis[i]=map1[s][i].lenth;
cost[i]=map1[s][i].cost;
} int pos=;
dis[s]=;
vis[s]=;
for(int k=;k<n;k++){
int min1=inf;
for(int i=;i<=n;i++){
if(!vis[i]&&min1>dis[i]){
min1=dis[i];
pos=i;
}
}
vis[pos]=;
for(int i=;i<=n;i++){
int l=dis[pos]+map1[pos][i].lenth;
if(!vis[i]&&dis[i]>=l){
if(dis[i]==l){///找到相等路径时,选取花费少的
cost[i]=std::min(cost[i],cost[pos]+map1[pos][i].cost);
}
else///无条件选择路径短的
{
cost[i]=cost[pos]+map1[pos][i].cost;
dis[i]=l;
} }
}
}
}
int main()
{
int n,m,i,j;
Path p;
while(~scanf("%d%d",&n,&m)&&n&&m){
for(i=;i<=n;i++)
{
for(j=;j<=n;j++)
{
map1[i][j].lenth=inf;
}
} int a,b,c,cost1;
for(j=;j<m;j++)
{
scanf("%d%d%d%d",&a,&b,&c,&cost1);
///可能会出现重边!!!
if(c<map1[a][b].lenth){
map1[a][b].lenth=map1[b][a].lenth=c;///保留距离较短的
map1[a][b].cost=map1[b][a].cost=cost1;
}
else if(map1[a][b].lenth==c&&map1[a][b].cost>cost1)///保留费用较少的
{
map1[a][b].cost=map1[b][a].cost=cost1;
}
}
int s,t;
scanf("%d%d",&s,&t);
dijkstra(n,s,t);
printf("%d %d\n",dis[t],cost[t]);
}
return ;
}
#include "cstdio"
#include<iostream>
#include<algorithm>
#include<queue>
#include<string.h>
#include<math.h>
#include<vector> using namespace std; struct node{
int ans = ;///动态记录起点到终点之间的最短花费
int minr = 1e9;///动态记录起点到终点之间的最短距离
vector<int>con;///另一点----数组包含所有与之连通的节点
vector<int>len;///之间长度----与con中点一一对应
vector<int>exp;///之间花费----与con中点一一对应
int vis = ;///节点是否已被访问
}data[]; int main()
{
int n, m, begi, endi;
while (cin >> n >> m)
{
if (n == && m == )
{
return ;
}
///初始化
for (size_t i = ; i <= n; i++)
{
data[i].ans = ;
data[i].vis = ;
data[i].minr = 1e9;
data[i].con.clear();
data[i].len.clear();
data[i].exp.clear();
}
///输入节点+权值信息 m条
for (size_t i = ; i < m; i++)
{
int be, ed, len, tar;
scanf("%d%d%d%d", &be, &ed, &len, &tar);
data[be].con.push_back(ed);
data[be].len.push_back(len);
data[be].exp.push_back(tar);
data[ed].con.push_back(be);
data[ed].len.push_back(len);///之间长度
data[ed].exp.push_back(tar);///之间花费
}
cin >> begi >> endi;
data[begi].ans = ;
data[begi].minr = ;
while ()
{
if (begi == endi)
{
break;
}
///查看所有与开始节点相连的节点
int size = data[begi].con.size();
for (size_t i = ; i < size; i++)///对剩余size-1个点
{
if (data[data[begi].con[i]].minr > data[begi].minr + data[begi].len[i])
{
data[data[begi].con[i]].ans = data[begi].ans + data[begi].exp[i];
data[data[begi].con[i]].minr = data[begi].minr + data[begi].len[i];
}
else if (data[data[begi].con[i]].minr == data[begi].minr + data[begi].len[i])
{
///路径路径相等,看花费
data[data[begi].con[i]].ans = min(data[begi].ans + data[begi].exp[i], data[data[begi].con[i]].ans);
}
}
data[begi].vis = ;
int temp = 1e9;
begi = -;
for (size_t i = ; i <= n; i++)
{
if (temp>data[i].minr&&data[i].vis == )///找出最小minr
{
temp = data[i].minr;
begi = i;
}
}
if (begi == -)
{
break;
}
}
cout << data[endi].minr << " " << data[endi].ans << "\n";
}
}
HDU3790---(双权最短路径)的更多相关文章
- Dijkstra 算法——计算有权最短路径(边有权值)
[0]README 0.1) 本文总结于 数据结构与算法分析, 源代码均为原创, 旨在理解 Dijkstra 的思想并用源代码加以实现: 0.2)最短路径算法的基础知识,参见 http://blog. ...
- 【迪杰斯特拉双关键字最短路】【HDU3790】【最短路径问题】
题目大意: 给你n个点,m条无向边,每条边都有长度d和花费p,给你起点s终点t,要求输出起点到终点的最短距离及其花费,如果最短距离有多条路线,则输出花费最少的. 只需要再更新的时候判断一下就好 voi ...
- 【SPFA与Dijkstra的对比】CDOJ 1961 咸鱼睡觉觉【差分约束-负权最短路径SPFA】
差分约束系统,求最小值,跑最长路. 转自:https://www.cnblogs.com/ehanla/p/9134012.html 题解:设sum[x]为前x个咕咕中至少需要赶走的咕咕数,则sum[ ...
- HDOJ 3790 双权值Dijkstra
#include <iostream> #include <stdio.h> #include <string.h> #include <cstring> ...
- hdoj--3790--最短路径问题(双权值迪杰斯特拉)
最短路径问题 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total ...
- 有向有权图的最短路径算法--Dijkstra算法
Dijkstra算法 1.定义概览 Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止.Di ...
- PAT Advanced 1030 Travel Plan (30) [Dijkstra算法 + DFS,最短路径,边权]
题目 A traveler's map gives the distances between cities along the highways, together with the cost of ...
- SLT 优先队列 哈弗曼树最小带权路径
与普通的队列不同,普通的队列是先进先出的,而优先队列出队的顺序不是先进先出,而是大(或者小)元素先出队,需要#include <queue> 成员函数 成员函数 作用 empty() 判断 ...
- poj 题目分类(2)
初期: 一.基本算法: (1)枚举. (poj1753,poj2965) (2)贪心(poj1328,poj2109,poj2586) (3)递归和分治法. (4)递推. (5)构造法.(poj329 ...
随机推荐
- CSS3实现3D球体旋转动画
html <div class="ball-box"> <div class="ball"> <div class="l ...
- ArcPy:GeoJSON转ArcGIS Geometry
import arcpy geojson = {"type":"Polygon","coordinates":[[[120.81878662 ...
- Spring MVC 开发 配置
1.首先在web.xml中配置一个DispatcherServlet,并通过<servlet-mapping>指定需要拦截的url. 下面xml中配置一个拦截.html为后缀的url. & ...
- flask_sqlalchemy中db.session是如何保持请求间独立的--源码阅读笔记
本文主要是为了验证两个问题: flask处理请求时通过新建线程.进程.协程的区别(顺带一提) flask_sqlalchemy是如何使用db.session使多个请求中保函的改变同一个表的sql操作不 ...
- java csv list cant not repeat
require: /** * before: * file A1.csv {1,2,3,4,5} * file A2.csv {2,3,9,10,11} * file B1.csv {5,12,13, ...
- [剑指Offer] 21.栈的压入、弹出序列
题目描述 输入两个整数序列,第一个序列表示栈的压入顺序,请判断第二个序列是否为该栈的弹出顺序.假设压入栈的所有数字均不相等.例如序列1,2,3,4,5是某栈的压入顺序,序列4,5,3,2,1是该压栈序 ...
- 配置apache反向代理进行跨域
配置apache反向代理 打开配置文件httpd.conf 开启 proxy_http_module 和 proxy_module 模块,将#号删除 #LoadModule proxy_module ...
- java实现分页功能的类
package smn.util; public class Pager { private int pageNow; private int pageSize=4; private int tota ...
- 配合JAVA的AJAX使用
概要 Ajax是“Asynchronous JavaScript and XML”的简称,即异步的JavaScript和XML. readyState属性用来返回当前的请求状态,有五个可选值.分别是0 ...
- BZOJ3073 PA2011Journeys(线段树+bfs)
线段树优化建图裸题.建两棵线段树,一棵表示入一棵表示出.对题中所给的边新建一个虚拟点,将两段区间拆成线段树上对应区间,出线段树中对应区间所表示的点向虚拟点连边权0的边,虚拟点向入线段树中对应区间所表示 ...