转发请注明原创地址 http://www.cnblogs.com/dongxiao-yang/p/7463693.html

kafka新版consumer所有的group管理工作在服务端都由GroupCoordinator这个新角色来处理,最近测试发现consumer在reblance过程中会有各种各样的等待行为,于是研究下相关源码,GroupCoordinator是broker服务端处理consumer各种group相关请求的管理类。本次源码研究版本是0.10.2.0

首先贴一下huxihxKafka消费组(consumer group)画过的一个流程图

这个图以及下面的几个流程图非常清晰的表明了当一个consumer(无论是新初始化的实例还是各种情况重新reblance的已有客户端)试图加入一个group的第一步都是先发送一个JoinGoupRequest到Coordinator,这个请求里具体包含了什么信息可以从AbstractCoordinator这个类的源代码找到

    /**
* Join the group and return the assignment for the next generation. This function handles both
* JoinGroup and SyncGroup, delegating to {@link #performAssignment(String, String, Map)} if
* elected leader by the coordinator.
* @return A request future which wraps the assignment returned from the group leader
*/
private RequestFuture<ByteBuffer> sendJoinGroupRequest() {
if (coordinatorUnknown())
return RequestFuture.coordinatorNotAvailable(); // send a join group request to the coordinator
log.info("(Re-)joining group {}", groupId);
JoinGroupRequest.Builder requestBuilder = new JoinGroupRequest.Builder(
groupId,
this.sessionTimeoutMs,
this.generation.memberId,
protocolType(),
metadata()).setRebalanceTimeout(this.rebalanceTimeoutMs); log.debug("Sending JoinGroup ({}) to coordinator {}", requestBuilder, this.coordinator);
return client.send(coordinator, requestBuilder)
.compose(new JoinGroupResponseHandler()); private Generation generation = Generation.NO_GENERATION; protected static class Generation {
public static final Generation NO_GENERATION = new Generation(
OffsetCommitRequest.DEFAULT_GENERATION_ID,
JoinGroupRequest.UNKNOWN_MEMBER_ID,
null); public final int generationId;
public final String memberId;
public final String protocol; public Generation(int generationId, String memberId, String protocol) {
this.generationId = generationId;
this.memberId = memberId;
this.protocol = protocol;
}
}  

上述可以看出sendJoinGroupRequest里面包含了groupid,sesseionTimeout,membeid,rebalancetimeout等几个属性,如果是新初始化的consumer程序generation属性默认为NO_GENERATION,memberid就是JoinGroupRequest.UNKNOWN_MEMBER_ID

然后是server处理sendJoinGroupRequest的代码,请求被转交到了GroupCoordinator类里的handleJoinGroup方法,该方法在校验了部分参数和group状态的合法性后将具体工作放到了doJoinGroup方法里。

private def doJoinGroup(group: GroupMetadata,
memberId: String,
clientId: String,
clientHost: String,
rebalanceTimeoutMs: Int,
sessionTimeoutMs: Int,
protocolType: String,
protocols: List[(String, Array[Byte])],
responseCallback: JoinCallback) {
group synchronized {
if (!group.is(Empty) && (group.protocolType != Some(protocolType) || !group.supportsProtocols(protocols.map(_._1).toSet))) {
// if the new member does not support the group protocol, reject it
responseCallback(joinError(memberId, Errors.INCONSISTENT_GROUP_PROTOCOL.code))
} else if (memberId != JoinGroupRequest.UNKNOWN_MEMBER_ID && !group.has(memberId)) {
// if the member trying to register with a un-recognized id, send the response to let
// it reset its member id and retry
responseCallback(joinError(memberId, Errors.UNKNOWN_MEMBER_ID.code))
} else {
group.currentState match {
case Dead =>
// if the group is marked as dead, it means some other thread has just removed the group
// from the coordinator metadata; this is likely that the group has migrated to some other
// coordinator OR the group is in a transient unstable phase. Let the member retry
// joining without the specified member id,
responseCallback(joinError(memberId, Errors.UNKNOWN_MEMBER_ID.code)) case PreparingRebalance =>
if (memberId == JoinGroupRequest.UNKNOWN_MEMBER_ID) {
addMemberAndRebalance(rebalanceTimeoutMs, sessionTimeoutMs, clientId, clientHost, protocolType, protocols, group, responseCallback)
} else {
val member = group.get(memberId)
updateMemberAndRebalance(group, member, protocols, responseCallback)
} case AwaitingSync =>
if (memberId == JoinGroupRequest.UNKNOWN_MEMBER_ID) {
addMemberAndRebalance(rebalanceTimeoutMs, sessionTimeoutMs, clientId, clientHost, protocolType, protocols, group, responseCallback)
} else {
val member = group.get(memberId)
if (member.matches(protocols)) {
// member is joining with the same metadata (which could be because it failed to
// receive the initial JoinGroup response), so just return current group information
// for the current generation.
responseCallback(JoinGroupResult(
members = if (memberId == group.leaderId) {
group.currentMemberMetadata
} else {
Map.empty
},
memberId = memberId,
generationId = group.generationId,
subProtocol = group.protocol,
leaderId = group.leaderId,
errorCode = Errors.NONE.code))
} else {
// member has changed metadata, so force a rebalance
updateMemberAndRebalance(group, member, protocols, responseCallback)
}
} case Empty | Stable =>
if (memberId == JoinGroupRequest.UNKNOWN_MEMBER_ID) {
// if the member id is unknown, register the member to the group
addMemberAndRebalance(rebalanceTimeoutMs, sessionTimeoutMs, clientId, clientHost, protocolType, protocols, group, responseCallback)
} else {
val member = group.get(memberId)
if (memberId == group.leaderId || !member.matches(protocols)) {
// force a rebalance if a member has changed metadata or if the leader sends JoinGroup.
// The latter allows the leader to trigger rebalances for changes affecting assignment
// which do not affect the member metadata (such as topic metadata changes for the consumer)
updateMemberAndRebalance(group, member, protocols, responseCallback)
} else {
// for followers with no actual change to their metadata, just return group information
// for the current generation which will allow them to issue SyncGroup
responseCallback(JoinGroupResult(
members = Map.empty,
memberId = memberId,
generationId = group.generationId,
subProtocol = group.protocol,
leaderId = group.leaderId,
errorCode = Errors.NONE.code))
}
}
} if (group.is(PreparingRebalance))
joinPurgatory.checkAndComplete(GroupKey(group.groupId))
}
}
}  

GroupMetadata对象是一个有PreparingRebalance,AwaitingSync,Stable,Dead,Empty几种状态的状态机,在服务端用于表示当前管理group的状态。

一 第一批consumer加入group

1 由上文可知,新初始化的consumer刚开始的memberid都是JoinGroupRequest.UNKNOWN_MEMBER_ID,所有新成员都进入addMemberAndRebalance方法初始化一个member对象并add进group列表内部,只有一个加入的member才能进入maybePrepareRebalance的同步代码块内调用prepareReblacne方法

  private def addMemberAndRebalance(rebalanceTimeoutMs: Int,
sessionTimeoutMs: Int,
clientId: String,
clientHost: String,
protocolType: String,
protocols: List[(String, Array[Byte])],
group: GroupMetadata,
callback: JoinCallback) = {
// use the client-id with a random id suffix as the member-id
val memberId = clientId + "-" + group.generateMemberIdSuffix
val member = new MemberMetadata(memberId, group.groupId, clientId, clientHost, rebalanceTimeoutMs,
sessionTimeoutMs, protocolType, protocols)
member.awaitingJoinCallback = callback
group.add(member)
maybePrepareRebalance(group)
member
} private def maybePrepareRebalance(group: GroupMetadata) {
group synchronized {
if (group.canRebalance)
prepareRebalance(group)
}
}

  

prepareReblacne会把group的状态由上述的empty转变为PreparingRebalance,后续的客户端会判断PreparingRebalance同样进入addMemberAndRebalance,这样即使第一个member退出maybePrepareRebalance的synchronized代码块,剩余的member会发现group.canRebalacne返回的都是false直接略过

  private def prepareRebalance(group: GroupMetadata) {
// if any members are awaiting sync, cancel their request and have them rejoin
if (group.is(AwaitingSync))
resetAndPropagateAssignmentError(group, Errors.REBALANCE_IN_PROGRESS) group.transitionTo(PreparingRebalance)
info("Preparing to restabilize group %s with old generation %s".format(group.groupId, group.generationId)) val rebalanceTimeout = group.rebalanceTimeoutMs
val delayedRebalance = new DelayedJoin(this, group, rebalanceTimeout)
val groupKey = GroupKey(group.groupId)
joinPurgatory.tryCompleteElseWatch(delayedRebalance, Seq(groupKey))
}

 

上述代码里生成了一个DelayJoin,DelayJoin是kafka内部一种有超时时间的Timer.task的实现,会在两种情况下根据情况执行对应操作,一是timeout超时,另一种是满足某种条件后由程序主动运行并注销定时任务,注意这里放的时间是rebalanceTimeout而不是sessiontimeout。

我们看一下joinPurgatory.tryCompleteElseWatch(delayedRebalance, Seq(groupKey))和joinPurgatory.checkAndComplete(GroupKey(group.groupId))这两个方法的调用链路。

joinPurgatory.tryCompleteElseWatch->DelayedJoin.safeTryComplete->DelayedJoin.tryComplete->coordinator.tryCompleteJoin

joinPurgatory.checkAndComplete->DelayedOperation.checkAndComplete->DelayedJoin.safeTryComplete->DelayedJoin.tryComplete->coordinator.tryCompleteJoin

所以无论是第一个member结束prepareReblacne还是后续的member在doJoinGroup代码的最后都是去调用一下coordinator.tryCompleteJoin这个方法尝试完成joinGroup的等待

  def tryCompleteJoin(group: GroupMetadata, forceComplete: () => Boolean) = {
group synchronized {
if (group.notYetRejoinedMembers.isEmpty)
forceComplete()
else false
}
} def notYetRejoinedMembers = members.values.filter(_.awaitingJoinCallback == null).toList

tryCompleteJoin的判断逻辑非常简单,GroupMetadata内部缓存的所有member都有对应的注册连接上来(addMemberAndRebalance方法里的member.awaitingJoinCallback = callback会给member的awaitingJoinCallback赋予一个值,值为null的就是有之前的member没有加入进来),如果notYetRejoinedMembers的列表为空,那么客户端就齐了,可以进行reblance分配,如果一直不齐,那么会等到rebalanceTimeout过期后触发强制reblance。

二 heartbeat和session timeout

在reblance过程中可以从下列源码看到heartbeat的delay时间设置的是session.timeout,如果一个旧的consumer死掉后在这个时间内持续没有心跳,那么服务端onMemberFailure会把group内对应的memberid删除并重试一下joinPurgatory.checkAndComplete,如果前次删除后notYetRejoinedMembers变为空后那么joingroup的等待也结束了。

  /**
* Complete existing DelayedHeartbeats for the given member and schedule the next one
*/
private def completeAndScheduleNextHeartbeatExpiration(group: GroupMetadata, member: MemberMetadata) {
// complete current heartbeat expectation
member.latestHeartbeat = time.milliseconds()
val memberKey = MemberKey(member.groupId, member.memberId)
heartbeatPurgatory.checkAndComplete(memberKey) // reschedule the next heartbeat expiration deadline
val newHeartbeatDeadline = member.latestHeartbeat + member.sessionTimeoutMs
val delayedHeartbeat = new DelayedHeartbeat(this, group, member, newHeartbeatDeadline, member.sessionTimeoutMs)
heartbeatPurgatory.tryCompleteElseWatch(delayedHeartbeat, Seq(memberKey))
} def onExpireHeartbeat(group: GroupMetadata, member: MemberMetadata, heartbeatDeadline: Long) {
group synchronized {
if (!shouldKeepMemberAlive(member, heartbeatDeadline))
onMemberFailure(group, member)
}
} private def onMemberFailure(group: GroupMetadata, member: MemberMetadata) {
trace("Member %s in group %s has failed".format(member.memberId, group.groupId))
group.remove(member.memberId)
group.currentState match {
case Dead | Empty =>
case Stable | AwaitingSync => maybePrepareRebalance(group)
case PreparingRebalance => joinPurgatory.checkAndComplete(GroupKey(group.groupId))
}
}

  

结论,个人在测试过程中发现重启consumer中会有的部分卡顿大部分应该是由于这个notYetRejoinedMembers的列表由于上一次的关掉的consumer的session没有到期造成非空引起的等待。

参考文档

1 http://blog.csdn.net/zhanglh046/article/details/72833073

2 http://www.cnblogs.com/huxi2b/p/6223228.html

GroupCoordinator joingroup源码解析的更多相关文章

  1. 【原】Android热更新开源项目Tinker源码解析系列之三:so热更新

    本系列将从以下三个方面对Tinker进行源码解析: Android热更新开源项目Tinker源码解析系列之一:Dex热更新 Android热更新开源项目Tinker源码解析系列之二:资源文件热更新 A ...

  2. 【原】Android热更新开源项目Tinker源码解析系列之一:Dex热更新

    [原]Android热更新开源项目Tinker源码解析系列之一:Dex热更新 Tinker是微信的第一个开源项目,主要用于安卓应用bug的热修复和功能的迭代. Tinker github地址:http ...

  3. 【原】Android热更新开源项目Tinker源码解析系列之二:资源文件热更新

    上一篇文章介绍了Dex文件的热更新流程,本文将会分析Tinker中对资源文件的热更新流程. 同Dex,资源文件的热更新同样包括三个部分:资源补丁生成,资源补丁合成及资源补丁加载. 本系列将从以下三个方 ...

  4. 多线程爬坑之路-Thread和Runable源码解析之基本方法的运用实例

    前面的文章:多线程爬坑之路-学习多线程需要来了解哪些东西?(concurrent并发包的数据结构和线程池,Locks锁,Atomic原子类) 多线程爬坑之路-Thread和Runable源码解析 前面 ...

  5. jQuery2.x源码解析(缓存篇)

    jQuery2.x源码解析(构建篇) jQuery2.x源码解析(设计篇) jQuery2.x源码解析(回调篇) jQuery2.x源码解析(缓存篇) 缓存是jQuery中的又一核心设计,jQuery ...

  6. Spring IoC源码解析——Bean的创建和初始化

    Spring介绍 Spring(http://spring.io/)是一个轻量级的Java 开发框架,同时也是轻量级的IoC和AOP的容器框架,主要是针对JavaBean的生命周期进行管理的轻量级容器 ...

  7. jQuery2.x源码解析(构建篇)

    jQuery2.x源码解析(构建篇) jQuery2.x源码解析(设计篇) jQuery2.x源码解析(回调篇) jQuery2.x源码解析(缓存篇) 笔者阅读了园友艾伦 Aaron的系列博客< ...

  8. jQuery2.x源码解析(设计篇)

    jQuery2.x源码解析(构建篇) jQuery2.x源码解析(设计篇) jQuery2.x源码解析(回调篇) jQuery2.x源码解析(缓存篇) 这一篇笔者主要以设计的角度探索jQuery的源代 ...

  9. jQuery2.x源码解析(回调篇)

    jQuery2.x源码解析(构建篇) jQuery2.x源码解析(设计篇) jQuery2.x源码解析(回调篇) jQuery2.x源码解析(缓存篇) 通过艾伦的博客,我们能看出,jQuery的pro ...

随机推荐

  1. [Lydsy1805月赛] 对称数

    挺不错的一道数据结构题QWQ. 一开始发现这个题如果不看数据范围的话,妥妥的树上莫队啊23333,然鹅10组数据是不可能让你舒舒服服的树上莫队卡过的23333 于是想了想,这个题的模型就是,把u到v链 ...

  2. POJ 2975 Nim(博弈论)

    [题目链接] http://poj.org/problem?id=2975 [题目大意] 问在传统的nim游戏中先手必胜策略的数量 [题解] 设sg=a1^a1^a3^a4^………^an,当sg为0时 ...

  3. 【费马小定理】HDU4704-Sum

    #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #d ...

  4. TZOJ 数据结构实验:创建单链表

    描述 实现一个函数CreateLinkList,能够完成不带头节点链表的创建. 部分代码已经给出,请补充完整,提交时请勿包含已经给出的代码. void PrintLinkList(Node *head ...

  5. 使用eclipse调试MR程序

    1)点击菜单中的“运行按钮”,然后选择调试配置 2) 3) 这里配置输入路径和输出路径,注意在eclipse上只是在单机模式下Hadoop不会使用HDFS,也不会开启任何Hadoop守护进程,所有程序 ...

  6. Spring.NET的中间数据层(Middle Tier Data Access)——事务管理(Transaction management)

    简介 Spring.NET为事务管理提供了一个持久化抽象(consistent abstraction ),其优点如下: 为不同事务API,例如ADO.NET,Enterprise Services, ...

  7. debian 6软件更新源列表

    deb http://ftp.debian.org/debian/ squeeze main non-free contribdeb http://ftp.debian.org/debian/ squ ...

  8. 【java】字符串的反转

    @org.junit.Test public void test(){ String a = "I IOVE CHINA"; if(a.indexOf(" ") ...

  9. activiti-explorer 流程中文乱码问题

    1.activiti-cfg.xml的修改,添加activityFontName和labelFontName属性 <bean id="processEngineConfiguratio ...

  10. Kubernetes连接外部数据源

    Kubernetes架构下比较核心的问题是数据如何persistance,虽然提供了Persistent volumn的方式,但是对于像数据库之类的产品在kubernetes集群环境中运行和管理还是很 ...