题目描述

小A的楼房外有一大片施工工地,工地上有N栋待建的楼房。每天,这片工地上的房子拆了又建、建了又拆。他经常无聊地看着窗外发呆,数自己能够看到多少栋房子。
为了简化问题,我们考虑这些事件发生在一个二维平面上。小A在平面上(0,0)点的位置,第i栋楼房可以用一条连接(i,0)和(i,Hi)的线段表示,其中Hi为第i栋楼房的高度。如果这栋楼房上任何一个高度大于0的点与(0,0)的连线没有与之前的线段相交,那么这栋楼房就被认为是可见的。
施工队的建造总共进行了M天。初始时,所有楼房都还没有开始建造,它们的高度均为0。在第i天,建筑队将会将横坐标为Xi的房屋的高度变为Yi(高度可以比原来大---修建,也可以比原来小---拆除,甚至可以保持不变---建筑队这天什么事也没做)。请你帮小A数数每天在建筑队完工之后,他能看到多少栋楼房?

输入

第一行两个正整数N,M
接下来M行,每行两个正整数Xi,Yi

输出

M行,第i行一个整数表示第i天过后小A能看到的楼房有多少栋

样例输入

3 4
2 4
3 6
1 1000000000
1 1

样例输出

1
1
1
2


题解

线段树 分块+二分查找

题目大意说白了就是给定n个斜率,求这些斜率的连续递增数列(从1开始,每有一个比前一个大的就选定)的长度,多次修改。

看了下数据范围可以分块求。

先暴力搞定每个块的递增数列,把这些斜率从小到大塞到一个栈里边(时间复杂度O(n/b),b为块的大小)。

然后查找时从头开始,在每个块对应的栈中二分查找第一个斜率比前一个大的位置,这个位置和栈里面后边的位置都能被看到(时间复杂度O(blog(n/b)))。

总时间复杂度为O(n*(n/b + blog(n/b)))≈O(n*(n/b + blogn))。

这样一来b=√(n/logn)比较合算,但其实也没什么卵用,直接√n一块就行。

#include <cstdio>
#include <cmath>
#include <algorithm>
#define N 100010
using namespace std;
int n , si , h[N];
struct data
{
int top , sta[400];
}a[400];
bool cmp(int a , int b)
{
if(!b) return h[a] > 0;
return (long long)h[a] * b > (long long)h[b] * a;
}
int main()
{
int m , i , si , p , l , r , mid , ans , tmp , last;
scanf("%d%d" , &n , &m) , n ++ ;
si = (int)sqrt(n);
while(m -- )
{
scanf("%d" , &p);
scanf("%d" , &h[p]);
l = p / si * si , r = min(n , (p / si + 1) * si);
a[p / si].top = 0;
for(i = l ; i < r ; i ++ )
if(cmp(i , a[p / si].sta[a[p / si].top]))
a[p / si].sta[++a[p / si].top] = i;
ans = 0 , last = 0;
for(i = 0 ; i <= (n - 1) / si ; i ++ )
{
l = 1 , r = a[i].top , tmp = 0;
while(l <= r)
{
mid = (l + r) >> 1;
if(cmp(a[i].sta[mid] , last)) tmp = mid , r = mid - 1;
else l = mid + 1;
}
if(tmp) last = a[i].sta[a[i].top] , ans += a[i].top - tmp + 1;
}
printf("%d\n" , ans);
}
return 0;
}

【bzoj2957】楼房重建 分块+二分查找的更多相关文章

  1. BZOJ2957: 楼房重建(分块)

    题意 题目链接 Sol 自己YY出了一个\(n \sqrt{n} \log n\)的辣鸡做法没想到还能过.. 可以直接对序列分块,我们记第\(i\)个位置的值为\(a[i] = \frac{H_i}{ ...

  2. BZOJ_3343_教主的魔法_分块+二分查找

    BZOJ_3343_教主的魔法_分块+二分查找 题意:教主最近学会了一种神奇的魔法,能够使人长高.于是他准备演示给XMYZ信息组每个英雄看.于是N个英雄们又一次聚集在了一起,这次他们排成了一列被编号为 ...

  3. BZOJ 3343: 教主的魔法(分块+二分查找)

    BZOJ 3343: 教主的魔法(分块+二分查找) 3343: 教主的魔法 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1172  Solved:  ...

  4. 【BZOJ2957】楼房重建 分块

    [BZOJ2957]楼房重建 Description 小A的楼房外有一大片施工工地,工地上有N栋待建的楼房.每天,这片工地上的房子拆了又建.建了又拆.他经常无聊地看着窗外发呆,数自己能够看到多少栋房子 ...

  5. 洛谷P4198 楼房重建 (分块)

    洛谷P4198 楼房重建 题目描述 小A的楼房外有一大片施工工地,工地上有N栋待建的楼房.每天,这片工地上的房子拆了又建.建了又拆.他经常无聊地看着窗外发呆,数自己能够看到多少栋房子. 为了简化问题, ...

  6. bzoj 2957 楼房重建 分块

    楼房重建 Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/problem.php?id=29 ...

  7. BZOJ2957: 楼房重建(线段树&LIS)

    2957: 楼房重建 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 3727  Solved: 1793[Submit][Status][Discus ...

  8. 【分块】bzoj2957 楼房重建

    http://www.cnblogs.com/wmrv587/p/3843681.html ORZ 分块大爷.思路很神奇也很清晰. 把 块内最值 和 块内有序 两种良好的性质结合起来,非常棒地解决了这 ...

  9. 【tyvj1463】智商问题 [分块][二分查找]

    Background 各种数据结构帝~各种小姊妹帝~各种一遍AC帝~ 来吧! Description 某个同学又有很多小姊妹了他喜欢聪明的小姊妹 所以经常用神奇的函数来估算小姊妹的智商他得出了自己所有 ...

随机推荐

  1. 系统编程.py(多进程与多线程干货)

    1.并发与并行* 多个任务轮换在CPU上跑叫并发* 多个任务在多个CPU上跑,没有交替执行的* 状态叫并行.通常情况下都是并发,即使是多核.* 而控制进程先执行谁后执行谁通过操作系统的调度算法.目前已 ...

  2. spring-运行时值注入

    在项目中经常使用连接数据库的配置,如下所示 <bean id="dataSource" class="org.apache.commons.dbcp.BasicDa ...

  3. phpstudy启动时Apache启动不了

    打开cmd,输入:D:\phpStudy\PHPTutorial\Apache\bin\httpd.exe -t 回车,即显示错误信息 说是我们的有一个文件目录不存在或者不可读取, 出现这个一般有两种 ...

  4. Python学习:变量

    变量(Variables): 是为了存储程序在运算过程中的一些中间结果,为了方便日后调用储存在计算的内存中 官方介绍: Variables are used to storeinformation t ...

  5. python中string,time,datetime三者之间的转化

    这里time特指import time中的对象,datetime 特指from datetime import datetime中的对象,string指python自带的字符数据类型. 从使用的情况来 ...

  6. Educational Codeforces Round 47 (Rated for Div. 2) :E. Intercity Travelling

    题目链接:http://codeforces.com/contest/1009/problem/E 解题心得: 一个比较简单的组合数学,还需要找一些规律,自己把方向想得差不多了但是硬是找不到规律,还是 ...

  7. @Transactional spring 事务(转载)

    原文链接: http://www.cnblogs.com/sweetchildomine/p/6978037.html?utm_source=itdadao&utm_medium=referr ...

  8. PHP.46-TP框架商城应用实例-后台21-权限管理-权限和角色的关系

    权限和角色的关系 权限功能 角色功能 权限与角色的关联要通过权限-角色表进行{多对多} /********* 角色-权限表 *********/ drop if exists p39_role_pri ...

  9. Android——搜索传统蓝牙设备

    一,主布局: <?xml version="1.0" encoding="utf-8"?> <LinearLayout xmlns:andro ...

  10. ORB-SLAM 代码笔记(四)tracking代码结构

    首先要清楚ORB-SLAM视觉跟踪的原理,然后对tracking.cc中的函数逐个讲解 代码的前面部分是从配置文件中读取校准好的相机参数(内参和畸变参数,以及双目的深度测量设定),并且加载ORB特征点 ...