Linux systemd资源控制初探

本文记录一次cgroup子目录丢失问题,并简单探索了Linux systemd的资源控制机制。

问题现象

我们希望通过systemd拉起服务并通过cgroup限制其CPU、memory的使用,因此我们新建了一个.service文件,文件里面创建了自己的cgroup目录,设置了cpu、memory限制,然后通过cgexec拉起我们的服务进程。假设我们的服务叫xx,.service文件大概是这样的:

[Unit]
Description=xx Server
Documentation=xx docs [Service]
EnvironmentFile=-/etc/xx
ExecStartPre=/usr/bin/mkdir -p /sys/fs/cgroup/memory/xx
ExecStartPre=/usr/bin/bash -c "echo 2G > /sys/fs/cgroup/memory/xx/memory.limit_in_bytes"
ExecStartPre=/usr/bin/bash -c "echo 2G > /sys/fs/cgroup/memory/xx/memory.memsw.limit_in_bytes" ExecStartPre=/usr/bin/mkdir -p /sys/fs/cgroup/cpu/xx
ExecStartPre=/usr/bin/bash -c "echo 100000 > /sys/fs/cgroup/cpu/xx/cpu.cfs_period_us"
ExecStartPre=/usr/bin/bash -c "echo 100000 > /sys/fs/cgroup/cpu/xx/cpu.cfs_quota_us"
ExecStartPre=/usr/bin/bash -c "echo 1024 > /sys/fs/cgroup/cpu/xx/cpu.shares" ExecStart=/usr/bin/cgexec -g cpu,memory:xx /usr/bin/xx Restart=on-failure
KillMode=process
LimitNOFILE=102400
LimitNPROC=102400
LimitCORE=infinity [Install]
WantedBy=multi-user.target

设置完.service文件后,将其拷贝到/usr/lib/systemd/system目录(CentOS 7)下,然后通过systemctl start xx.service启动,通过systemctl enable xx.service关联自启动项。

但在运行很久之后,发现我们的xx服务内存使用爆了,然后查看我们自己创建的xx cgroup目录丢失了,因此对应的CPU、memory资源也就没有限制住。

分析过程

刚开始的定位过程是很懵逼的,各种日志查看没有发现线索,尝试复现也没有成功。正在苦恼没有方向之际,无意中发现执行了其他服务的systemd的某些操作(stop/start/enable)之后,复现了问题,就这样盯上了systemd。

后来发现其实一开始就可以通过查看进程的cgroup信息就能很快找到线索:进程cgroup移到了/system.slice/xx.service目录下:

[root@localhost ~]# cat /proc/214041/cgroup
10:memory:/system.slice/xx.service
4:cpuacct,cpu:/system.slice/xx.service

而/system.slice/xx.service正是systemd为xx这个服务创建的cgroup目录。所以问题锁定为systemd把xx进程从我们自己创建的cgroup移动到它默认创建的cgroup里,但是它默认创建的cgroup显然没有设置过资源限制。

systemd资源控制

systemd通过Unit的配置文件配置资源控制,Unit包括services(上面例子就是一个service unit), slices, scopes, sockets, mount points, 和swap devices六种。systemd底层也是依赖Linux Control Groups (cgroups)来实现资源控制。

cgroup v1和v2

cgroup有两个版本,新版本的cgroup v2即Unified cgroup(参考cgroup v2)和传统的cgroup v1(参考cgroup v1),在新版的Linux(4.x)上,v1和v2同时存在,但同一种资源(CPU、内存、IO等)只能用v1或者v2一种cgroup版本进行控制。systemd同时支持这两个版本,并在设置时为两者之间做相应的转换。对于每个控制器,如果设置了cgroup v2的配置,则忽略所有v1的相关配置。

在systemd配置选项上,cgroup v2相比cgroup v1有如下不一样的地方:

1.CPU: CPUWeight=StartupCPUWeight=取代了CPUShares=StartupCPUShares=。cgroup v2没有"cpuacct"控制器。

2.Memory:MemoryMax=取代了MemoryLimit=. MemoryLow= and MemoryHigh=只在cgroup v2上支持。

3.IO:BlockIO前缀取代了IO前缀。在cgroup v2,Buffered写入也统计在了cgroup写IO里,这是cgroup v1一直存在的问题。

配置选项(新版本systemd)

CPUAccounting=:是否开启该unit的CPU使用统计,BOOL型,true或者false。

CPUWeight=weight, StartupCPUWeight=weight:用于设置cgroup v2的cpu.weight参数。取值范围1-1000,默认值100。StartupCPUWeight应用于系统启动阶段,CPUWeight应用于正常运行时。这两个配置取代了旧版本的CPUShares=StartupCPUShares=

CPUQuota=:用于设置cgroup v2的cpu.max参数或者cgroup v1的cpu.cfs_quota_us参数。表示可以占用的CPU时间配额百分比。如:20%表示最大可以使用单个CPU核的20%。可以超过100%,比如200%表示可以使用2个CPU核。

MemoryAccounting=:是否开启该unit的memory使用统计,BOOL型,true或者false。

MemoryLow=bytes:用于设置cgroup v2的memory.low参数,不支持cgroup v1。当unit使用的内存低于该值时将被保护,其内存不会被回收。可以设置不同的后缀:K,M,G或者T表示不同的单位。

MemoryHigh=bytes:用于设置cgroup v2的memory.high参数,不支持cgroup v1。内存使用超过该值时,进程将被降低运行时间,并快速回收其占用的内存。同样可以设置不同的后缀:K,M,G或者T(单位1024)。也可以设置为infinity表示没有限制。

MemoryMax=bytes:用于设置cgroup v2的memory.max参数,如果进程的内存超过该限制,则会触发out-of-memory将其kill掉。同样可以设置不同的后缀:K,M,G或者T(单位1024),以及设置为infinity。该参数去掉旧版本的MemoryLimit=

MemorySwapMax=bytes:用于设置cgroup v2的memory.swap.max"参数。和MemoryMax类似,不同的是用于控制Swap的使用上限。

TasksAccounting=:是否开启unit的task个数统计,BOOL型,ture或者false。

TasksMax=N:用于设置cgroup的pids.max参数。控制unit可以创建的最大tasks个数。

IOAccounting:是否开启Block IO的统计,BOOL型,true或者false。对应旧版本的BlockIOAccounting=参数。

IOWeight=weight, StartupIOWeight=weight:设置cgroup v2的io.weight参数,控制IO的权重。取值范围0-1000,默认100。该设置取代了旧版本的BlockIOWeight=StartupBlockIOWeight=

IODeviceWeight=device weight:控制单个设备的IO权重,同样设置在cgroup v2的io.weight参数里,如“/dev/sda 1000”。取值范围0-1000,默认100。该设置取代了旧版本的BlockIODeviceWeight=

IOReadBandwidthMax=device bytes, IOWriteBandwidthMax=device bytes:设置磁盘IO读写带宽上限,对应cgroup v2的io.max参数。该参数格式为“path bandwidth”,path为具体设备名或者文件系统路径(最终限制的是文件系统对应的设备名)。数值bandwidth支持以K,M,G,T后缀(单位1000)。可以设置多行以限制对多个设备的IO带宽。该参数取代了旧版本的BlockIOReadBandwidth=BlockIOWriteBandwidth=

IOReadIOPSMax=device IOPS, IOWriteIOPSMax=device IOPS:设置磁盘IO读写的IOPS上限,对应cgroup v2的io.max参数。格式和上面带宽限制的格式一样一样的。

IPAccounting=:BOOL型,如果为true,则开启ipv4/ipv6的监听和已连接的socket网络收发包统计。

IPAddressAllow=ADDRESS[/PREFIXLENGTH]…, IPAddressDeny=ADDRESS[/PREFIXLENGTH]…:开启AF_INET和AF_INET6 sockets的网络包过滤功能。参数格式为IPv4或IPv6的地址列表,IP地址后面支持地址匹配前缀(以'/'分隔),如”10.10.10.10/24“。需要注意,该功能仅在开启“eBPF”模块的系统上才支持。

DeviceAllow=:用于控制对指定的设备节点的访问限制。格式为“设备名 权限”,设备名以"/dev/"开头或者"char-"、“block-”开头。权限为'r','w','m'的组合,分别代表可读、可写和可以通过mknode创建指定的设备节点。对应cgroup的"devices.allow"和"devices.deny"参数。

DevicePolicy=auto|closed|strict:控制设备访问的策略。strict表示:只允许明确指定的访问类型;closed表示:此外,还允许访问包含/dev/null,/dev/zero,/dev/full,/dev/random,/dev/urandom等标准伪设备。auto表示:此外,如果没有明确的DeviceAllow=存在,则允许访问所有设备。auto是默认设置。

Slice=:存放unit的slice目录,默认为system.slice。

Delegate=:默认关闭,开启后将更多的资源控制交给进程自己管理。开启后unit可以在单其cgroup下创建和管理其自己的cgroup的私人子层级,systemd将不在维护其cgoup以及将其进程从unit的cgroup里移走。开启方法:“Delegate=yes”。所以通过设置Delegate选项,可以解决上面的问题。

配置选项(旧版本)

这些是旧版本的选项,新版本已经弃用。列出来是因为centos 7里的systemd是旧版本,所以要使用这些配置。

CPUShares=weight, StartupCPUShares=weight:进程获取CPU运行时间的权重值,对应cgroup的"cpu.shares"参数,取值范围2-262144,默认值1024。

MemoryLimit=bytes:进程内存使用上限,对应cgroup的"memory.limit_in_bytes"参数。支持K,M,G,T(单位1024)以及infinity。默认值-1表示不限制。

BlockIOAccounting=:开启磁盘IO统计选项,同上面的IOAccounting=。

BlockIOWeight=weight, StartupBlockIOWeight=weight:磁盘IO的权重,对应cgroup的"blkio.weight"参数。取值范围10-1000,默认值500。

BlockIODeviceWeight=device weight:指定磁盘的IO权重,对应cgroup的"blkio.weight_device"参数。取值范围1-1000,默认值500。

BlockIOReadBandwidth=device bytes, BlockIOWriteBandwidth=device bytes:磁盘IO带宽的上限配置,对应cgroup的"blkio.throttle.read_bps_device"和 "blkio.throttle.write_bps_device"参数。支持K,M,G,T后缀(单位1000)。

问题解决

回到上面的问题,我们可以通过两种方法解决:

1.在unit配置文件里添加一个Delegate=yes的选项,这样资源控制完全有用户自己管理,systemd不会去移动进程到其默认创建的cgroup里。

2.直接使用systemd的资源控制机制进行资源控制。通过直接使用systemd的资源控制的.service配置文件样例:

[Unit]
Description=xx Server [Service]
ExecStart=/usr/bin/xx LimitNOFILE=102400
LimitNPROC=102400
LimitCORE=infinity
Restart=on-failure
KillMode=process
MemoryLimit=1G
CPUShares=1024 [Install]
WantedBy=multi-user.target

修改完.service文件后,通过systemctl daemon-reload重新导入service文件,通过systemctl restart xx重启服务。

总结

systemd有自己的资源控制机制,所以用systemd拉起的服务时,不要自作聪明创建自己的cgroup目录并通过cgexec来拉起进程进行资源控制。

参考

systemd.resource-control

systemd for Administrators, Part XVIII

Control Group APIs and Delegation

Linux systemd资源控制初探的更多相关文章

  1. linux用户资源控制

    /etc/security/limits.conf配置文件详解 这个文件主要是用来限制用户对资源的使用.是/lib64/security/pam_limits.so模块对应的/etc/serurity ...

  2. Linux资源控制-CPU和内存

    主要介绍Linux下, 如果对进程的CPU和内存资源的使用情况进行控制的方法. CPU资源控制 每个进程能够占用CPU多长时间, 什么时候能够占用CPU是和系统的调度密切相关的. Linux系统中有多 ...

  3. Linux资源控制-CPU和内存【转】

    转自:http://www.cnblogs.com/wang_yb/p/3942208.html 主要介绍Linux下, 如果对进程的CPU和内存资源的使用情况进行控制的方法. CPU资源控制 每个进 ...

  4. Docker的资源控制管理

    Docker的资源控制管理 1.CPU控制 2.对内存使用进行限制 3.对磁盘I/O配额控制的限制 1.CPU控制: cgroups,是一个非常强大的linux内核工具,他不仅可以限制被namespa ...

  5. Linux systemd 打开调试终端、添加开机自运行程序

    /************************************************************************* * Linux systemd 打开调试终端.添加 ...

  6. (干货)Linux学习资源推荐

    源地址 国内的专业Linux网站(GB) ChinaUnix Linux中国 实验楼: 免费提供了Linux在线实验环境,不用在自己机子上装系统也可以学习Linux,超方便实用!. 国内的专业Linu ...

  7. Linux iptables 应用控制访问SSH服务

    Title:Linux iptables 应用控制访问SSH服务  --2012-02-23 17:51 今天用到了以前从来没有用到过的,iptables控制访问,只允许外部访问SSH服务(22号端口 ...

  8. Identity4实现服务端+api资源控制+客户端请求

    准备写一些关于Identity4相关的东西,最近也比较对这方面感兴趣.所有做个开篇笔记记录一下,以便督促自己下一个技术方案方向 已经写好的入门级别Identity4的服务+api资源访问控制和简单的客 ...

  9. Linux进程资源占用分析

    [时间:2018-03] [状态:Open] [关键词:linux, 进程,proc,top] 0 引言 最近在分析安卓程序上的monkey测试日志时发现,需要了解下Linux进程资源占用情况及其查看 ...

随机推荐

  1. 【题解】 UVa11300 Spreading the Wealth

    题目大意 圆桌旁边坐着\(n\)个人,每个人有一定数量的金币,金币的总数能被\(n\)整除.每个人可以给他左右相邻的人一些金币,最终使得每个人的金币数量相等.您的任务是求出被转手的金币的数量的最小值. ...

  2. 【题解】 UVa11292 The Dragon of Loowater

    题目大意: 你的王国里有一条n个头的恶龙,你希望雇佣一些骑士把它杀死(即砍掉所有头).村里有m个骑士可以雇佣,一个能力值为x的骑士可以砍掉恶龙一个直径不超过x的头,且需要支付x个金币.如何雇佣骑士才能 ...

  3. string类------新标准c++程序设计

    定义: string类是STL中basic_string模板实例化得到的模板类.其定义如下: typedef basic_string<char>string; 构造函数: string类 ...

  4. mysql 行转列,对列的分组求和,对行求和

    CREATE TABLE students( id INT PRIMARY KEY, NAME VARCHAR(11)); CREATE TABLE courses( id INT PRIMARY K ...

  5. 浅谈Spring的两种配置容器

    浅谈Spring的两种配置容器 原文:https://www.jb51.net/article/126295.htm 更新时间:2017年10月20日 08:44:41   作者:黄小鱼ZZZ     ...

  6. 多线程《七》信号量,Event,定时器

    一 信号量 信号量也是一把锁,可以指定信号量为5,对比互斥锁同一时间只能有一个任务抢到锁去执行,信号量同一时间可以有5个任务拿到锁去执行,如果说互斥锁是合租房屋的人去抢一个厕所,那么信号量就相当于一群 ...

  7. MVC进阶篇(二)—路由机制

    前言 这个东西好像,一般也不经常动,都用默认的即可.由于MVC模式在framework里面的解析机制,区别与webform模式,是采用解析路由机制的url.从来实例化视图列对象,然后对该action进 ...

  8. HDU6318-2018ACM暑假多校联合训练2-1010-Swaps and Inversions-树状数组

    本题题意是,给你一个长度为n的序列,使用最少的操作把序列转换为从小到大的顺序,并输出操作数*min(x,y) 实质上是算出该序列中有多少逆序对,有归并排序和树状数组两种算法,由于数据之间的差值有点大, ...

  9. [译文]Casperjs1.1.0参考文档-安装

    安装 Casperjs能被安装在mac osx,windows 和大多数linux版本 依赖项 PhantomJS1.82及以上 Python2.6及以上(很多人忘了安装python导致安装失败) 1 ...

  10. shared_ptr智能指针

    来自博客:https://www.cnblogs.com/lzpong/p/6188034.html 多线程程序经常会遇到在某个线程A创建了一个对象,这个对象需要在线程B使用, 在没有shared_p ...