题面

Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a straight line waiting for feed. The cows are standing in the same order as they are numbered, and since they can be rather pushy, it is possible that two or more cows can line up at exactly the same location (that is, if we think of each cow as being located at some coordinate on a number line, then it is possible for two or more cows to share the same coordinate).

Some cows like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of ML (1 <= ML <= 10,000) constraints describes which cows like each other and the maximum distance by which they may be separated; a subsequent list of MD constraints (1 <= MD <= 10,000) tells which cows dislike each other and the minimum distance by which they must be separated.

Your job is to compute, if possible, the maximum possible distance between cow 1 and cow N that satisfies the distance constraints.

Input

Line 1: Three space-separated integers: N, ML, and MD.

Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart.

Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart.

Output

Line 1: A single integer. If no line-up is possible, output -1. If cows 1 and N can be arbitrarily far apart, output -2. Otherwise output the greatest possible distance between cows 1 and N.

Sample Input

4 2 1

1 3 10

2 4 20

2 3 3

Sample Output

27

Hint

Explanation of the sample:

There are 4 cows. Cows #1 and #3 must be no more than 10 units apart, cows #2 and #4 must be no more than 20 units apart, and cows #2 and #3 dislike each other and must be no fewer than 3 units apart.

The best layout, in terms of coordinates on a number line, is to put cow #1 at 0, cow #2 at 7, cow #3 at 10, and cow #4 at 27.

题解

翻译一下:有N头牛,ML个关系1,MD个关系2

对于关系1 a b c 而言 指 a牛和b牛之间的距离不能够超过c

对于关系2 a b d 而言 指 a牛和b牛之间的距离至少为d

求出1和N的最短距离,如果无解输出-1,距离可以无限大输出-2

题解:

差分约束

关系1而言直接建边

关系2而言 Xb-Xa>=d 变为 Xa-Xa<=-d

建边

然后SPFA求解

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<queue>
#include<cmath>
#include<algorithm>
using namespace std;
#define INF 100000000
#define MAX 1100
#define MAXL 50000
inline int read()
{
register int x=0,t=1;
register char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-'){t=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-48;ch=getchar();}
return x*t;
}
struct Line
{
int v,next,w;
}e[MAXL];
int h[MAX],cnt=1;
int dis[MAX];
int Count[MAX];
bool vis[MAX];
int N,Ma,Mb;
inline void Add(int u,int v,int w)
{
e[cnt]=(Line){v,h[u],w};
h[u]=cnt++;
}
bool SPFA()
{
for(int i=1;i<=N;++i)dis[i]=INF;
for(int i=1;i<=N;++i)Count[i]=0;
for(int i=1;i<=N;++i)vis[i]=false;
dis[1]=0;
queue<int> Q;
while(!Q.empty())Q.pop();
Q.push(1);
while(!Q.empty())
{
int u=Q.front();Q.pop();
vis[u]=false;
if(Count[u]>=N)return false;
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v,w=e[i].w;
if(dis[v]>dis[u]+w)
{
dis[v]=dis[u]+w;
if(!vis[v])
{
vis[v]=true;
Q.push(v);
Count[v]++;
}
}
}
}
return true;
}
int main()
{
N=read();Ma=read();Mb=read();
for(int i=1;i<=Ma;++i)
{
int a=read(),b=read(),c=read();
Add(a,b,c);
}
for(int i=1;i<=Mb;++i)
{
int a=read(),b=read(),c=read();
Add(b,a,-c);
}
if(!SPFA())//存在负环
printf("%d\n",-1);
else
if(dis[N]==INF)//可以无限大
printf("%d\n",-2);
else
printf("%d\n",dis[N]);
return 0;
}

POJ 3167 Layout(差分约束)的更多相关文章

  1. POJ 3169 Layout(差分约束+链式前向星+SPFA)

    描述 Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 ...

  2. POJ 3169 Layout (差分约束)

    题意:给定一些母牛,要求一个排列,有的母牛距离不能超过w,有的距离不能小于w,问你第一个和第n个最远距离是多少. 析:以前只是听说过个算法,从来没用过,差分约束. 对于第 i 个母牛和第 i+1 个, ...

  3. POJ 3169 Layout(差分约束啊)

    题目链接:http://poj.org/problem? id=3169 Description Like everyone else, cows like to stand close to the ...

  4. poj 3169 Layout 差分约束模板题

    Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6415   Accepted: 3098 Descriptio ...

  5. POJ 3169 Layout(差分约束 线性差分约束)

    题意: 有N头牛, 有以下关系: (1)A牛与B牛相距不能大于k (2)A牛与B牛相距不能小于k (3)第i+1头牛必须在第i头牛前面 给出若干对关系(1),(2) 求出第N头牛与第一头牛的最长可能距 ...

  6. poj Layout 差分约束+SPFA

    题目链接:http://poj.org/problem?id=3169 很好的差分约束入门题目,自己刚看时学呢 代码: #include<iostream> #include<cst ...

  7. ShortestPath:Layout(POJ 3169)(差分约束的应用)

                布局 题目大意:有N头牛,编号1-N,按编号排成一排准备吃东西,有些牛的关系比较好,所以希望他们不超过一定的距离,也有一些牛的关系很不好,所以希望彼此之间要满足某个关系,牛可以 ...

  8. POJ——3169Layout(差分约束)

    POJ——3169Layout Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 14702   Accepted ...

  9. POJ-3169 Layout (差分约束+SPFA)

    POJ-3169 Layout:http://poj.org/problem?id=3169 参考:https://blog.csdn.net/islittlehappy/article/detail ...

随机推荐

  1. python 路飞模块一考核总结

    1. 分别解释"=","==","+="的含义(口述) =为赋值语句,把一个变量值赋予另一个值 == 为条件判断,判断两个值是否相等 += ...

  2. yii2 源码分析 object类分析 (一)

    转载请注明链接http://www.cnblogs.com/liuwanqiu/p/6737327.html yii2基本上所有的类都是继承的object类,下面就来分析一下object类吧 obje ...

  3. PHPUnit-附录 C. XML 配置文件

    [http://www.phpunit.cn/manual/5.7/zh_cn/appendixes.configuration.html] PHPUnit <phpunit> 元素的属性 ...

  4. Xcode intellisense meaning of letters in colored boxes like f,T,C,M,P,C,K,# etc

    in Xcode this is called "Code Sense". And these icons also exist in Xcode 3. Red: macros # ...

  5. [翻译] 编写高性能 .NET 代码--第二章 GC -- 减少大对象堆的碎片,在某些情况下强制执行完整GC,按需压缩大对象堆,在GC前收到消息通知,使用弱引用缓存对象

    减少大对象堆的碎片 如果不能完全避免大对象堆的分配,则要尽量避免碎片化. 对于LOH不小心就会有无限增长,但LOH使用的空闲列表机制可以减轻增长的影响.利用这个空闲列表,我们可以在两块分配区域中间找到 ...

  6. bzoj 2073 暴力

    2073: [POI2004]PRZ Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 442  Solved: 327[Submit][Status][D ...

  7. bzoj 1188 [HNOI2007]分裂游戏 SG函数 SG定理

    [HNOI2007]分裂游戏 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1394  Solved: 847[Submit][Status][Dis ...

  8. 让互联网更快:新一代QUIC协议在腾讯的技术实践分享

    本文来自腾讯资深研发工程师罗成在InfoQ的技术分享. 1.前言 如果:你的 App,在不需要任何修改的情况下就能提升 15% 以上的访问速度,特别是弱网络的时候能够提升 20% 以上的访问速度. 如 ...

  9. 54.1 怎样才算学会django? 知道这28个知识点才算会django2

    学到什么程度才算会django了?这篇文章帮你梳理一下 关于django2的28个不可不知的知识点总结: 1.cookie操作: -客户端本地存储的键值对 2.session操作: -服务器端可以保存 ...

  10. Qt 如何使用 QImage 设置指定的颜色为透明色?

    Qt 如何使用 QImage 设置指定的颜色为透明色? 需求背景:使用华大身份证读卡器模块读取身份证信息,通过模块读取的图片为 *.BMP 格式,无透明色,故绘制到身份证上无法美观的显示. 通过查询身 ...