1×1卷积,又称为Network in Network


如果卷积的输出输入都只是一个平面,那么1x1卷积核并没有什么意义,它是完全不考虑像素与周边其他像素关系。 但卷积的输出输入是长方体,所以1x1卷积实际上是对每个像素点,在不同的channels上进行线性组合(信息整合),且保留了图片的原有平面结构,调控depth,从而完成升维或降维的功能。
如下图所示,如果选择2个filters的1x1卷积层,那么数据就从原本的depth 3 降到了2。若用4个filters,则起到了升维的作用。

1. 相当于输入(6×6)每个元素对应的所有通道分别进行了全连接运算,输出即为filters的数量。

2. 对于池化层,可以压缩高度和宽度,1×1卷积,可以压缩或增加通道数。

降维( dimension reductionality )或者升维。由于33卷积或者55卷积在几百个filter的卷积层上做卷积操作时相当耗时,所以11卷积在33卷积或者5*5卷积计算之前先降低维度。比如,一张500×500且厚度depth为100 的图片在20个filter上做1×1的卷积,那么结果的大小为500×500×20。

3. 加入非线性。卷积层之后经过激励层,1×1的卷积在前一层的学习表示上添加了非线性激励( non-linear activation ),提升网络的表达能力;

1×1卷积的用途(Network in Network)的更多相关文章

  1. “卷积神经网络(Convolutional Neural Network,CNN)”之问

    目录 Q1:CNN 中的全连接层为什么可以看作是使用卷积核遍历整个输入区域的卷积操作? Q2:1×1 的卷积核(filter)怎么理解? Q3:什么是感受野(Receptive field)? Q4: ...

  2. 深度学习方法(十):卷积神经网络结构变化——Maxout Networks,Network In Network,Global Average Pooling

    欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术感兴趣的同学加入. 最近接下来几篇博文会回到神经网络结构 ...

  3. 卷积神经网络(Convolutional Neural Network,CNN)

    全连接神经网络(Fully connected neural network)处理图像最大的问题在于全连接层的参数太多.参数增多除了导致计算速度减慢,还很容易导致过拟合问题.所以需要一个更合理的神经网 ...

  4. Network In Network——卷积神经网络的革新

    Network In Network 是13年的一篇paper 引用:Lin M, Chen Q, Yan S. Network in network[J]. arXiv preprint arXiv ...

  5. [DeeplearningAI笔记]卷积神经网络2.5-2.7 Network in Network/1*1卷积/Inception网络/GoogleNet

    4.2深度卷积网络 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献 Inception网络 --Szegedy C, Liu W, Jia Y, et al. Going deepe ...

  6. Network in Network(2013),1x1卷积与Global Average Pooling

    目录 写在前面 mlpconv layer实现 Global Average Pooling 网络结构 参考 博客:blog.shinelee.me | 博客园 | CSDN 写在前面 <Net ...

  7. 【转载】 卷积神经网络(Convolutional Neural Network,CNN)

    作者:wuliytTaotao 出处:https://www.cnblogs.com/wuliytTaotao/ 本作品采用知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议进行许可,欢迎 ...

  8. Deep Learning 25:读论文“Network in Network”——ICLR 2014

    论文Network in network (ICLR 2014)是对传统CNN的改进,传统的CNN就交替的卷积层和池化层的叠加,其中卷积层就是把上一层的输出与卷积核(即滤波器)卷积,是线性变换,然后再 ...

  9. Network In Network学习笔记

    Network In Network学习笔记 原文地址:http://blog.csdn.net/hjimce/article/details/50458190 作者:hjimce 一.相关理论 本篇 ...

随机推荐

  1. springmvc图片上传(兼容ie8以上,实时预览)

    html代码: <form id="uploadform" method="post" enctype="multipart/form-data ...

  2. shell第三篇

    第三篇本文摘自鸟哥的私房菜:http://cn.linux.vbird.org/linux_basic/0105computers.php#program(当年看的时候浮光掠影,现在回头发现,经典就是 ...

  3. CentOS 通过yum来升级php到php5.6

    在文章中,我们将展示在centOS系统下如果将php升级到5.6,之前通过yum来安装lamp环境,直接升级的话,提示没有更新包,也就是说默认情况下php5.3.3是最新 1.查看已经安装的php版本 ...

  4. TensorflowTutorial_二维数据构造简单CNN

    使用二维数据构造简单卷积神经网络 觉得有用的话,欢迎一起讨论相互学习~Follow Me 图像和一些时序数据集都可以用二维数据的形式表现,我们此次使用随机分布的二位数据构造一个简单的CNN-网络卷积- ...

  5. 00_Python面试题_迭代更新

    一.Python是什么类型的语言,以及和其他语言对比 1.Python是一种解释性语言,他和C语言以及C衍生的语言不通,在Python运行之前不需要编译,其他解释语言还有Ruby.PHP. 2.Pyt ...

  6. xBIM IFC 墙壁案例

    目录 xBIM 应用与学习 (一) xBIM 应用与学习 (二) xBIM 基本的模型操作 xBIM 日志操作 XBIM 3D 墙壁案例 xBIM 格式之间转换 xBIM 使用Linq 来优化查询 x ...

  7. POJ 3590 The shuffle Problem [置换群 DP]

    传送门 $1A$太爽了 从此$Candy?$完全理解了这种$DP$做法 和bzoj1025类似,不过是求最大的公倍数,并输出一个字典序最小的方案 依旧枚举质因子和次数,不足的划分成1 输出方案从循环长 ...

  8. Sql2012数据库还原

    Sql2012数据库还原(通过.bak数据库备份文件) 昨天系统挂了,那叫一个悲惨,重装了系统,但是sql2012的数据没有备份,同事帮忙发来备份文件(.bak),开始还原数据. 步骤:1 自己新建一 ...

  9. restful framework 认证源码流程

    一.请求到来之后,都要先执行dispatch方法,dispatch方法方法根据请求方式的不同触发get/post/put/delete等方法 注意,APIView中的dispatch方法有很多的功能 ...

  10. market1501的学习,跟着苏同学的博客学习

    先看看官方文档:然后附上苏的博客链接http://bigbrothersue.com/index.php/2017/12/20/person-re-id/ The Market-1501 datase ...